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Abstract

The R - linear boundary value problem in a multiply connected domain on a flat torus is considered. This problem is
closely related to the Riemann-Hilbert problem on analytical functions. The considered problem arises in the
homogenization procedure of random media with complex constants, which express the permittivity of components. A
new asymptotical formula for the effective permittivity tensor is derived. The formula contains location of inclusions in
symbolic form. The application of the derived formula to investigation of the morphology of the tumor cells in disordered
biological media is discussed. Glioma cells are modeled by elliptic inclusion and neuron cells by disks. In the considered
two-phase medium, the dependencies of permittivity of glioma and neuron on the frequency and their different shapes
can allow to investigate the impact of the tumor cells morphology on the effective permittivity tensor expressed through
the complex gradient.

Keywords: R - linear boundary value problem, Riemann-Hilbert problem, analytic function, permittivity tensor, flat
torus, inclusion.
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DOOPMYJACHI TYPAJIBI

XazpIKk Topna kembalnaHBICTEI aiiMakTa R - CHI3BIKTBIK IIEKapajbIK ecell KapacTelpbutansl. byn ecen Puman-
I'mnbOepTTiH  aHAJIMTHKANBIK (QYHKUMSIIAD Typasisl eceOiMeH ThIFbI3 OainaHbicajabsl. KapacTelppuiraH —ecen
KOMIIOHEHTTEPiH AWAIEKTPUKAIBIK OTKI3TIIITITiH OiIIipeTiH KOMIUIEKCTIK TYpaKTBIIaphl 0ap Ke3AeHCOK opTaimapiabl
opramianay nporeaypachblHaa TybIHAAHAbl. THIMII AMANEKTPUKAIBIK OTKI3TIiIl TEH30PhI YIIiH KaHa aCUMITOTHKAIIBIK
¢bopmyna Kypsuiasl. @opMysia CHMBOJIBIK (hOpMaIaFsl KOCHIH/IBUIAP/IBIH OPHAACYBIH KAMTHABI. AJIBIHFaH (OpMYJIaHbI
peTTenMereH OMOJIOTHSUIBIK OPTAJarhl 1CIK KacylIagapblHBIH MOP(OIOrHICHH 3epTTeyre KOJIaHybl KapacThlpbLIabl.
I'nroma rxacymianap 3JUIMITHKAIBIK KOCBIH/ABIIIAPMEH KoHE HEHPOH/IBIK KAacyllanap AUCKLIEp apKbUIbl MOJEIIbACHE I
KapacTbIpbuibin oThIpFaH exi (asanbsl opTaja riimoMa MeH HEHpOHHBIH O TKI3TIITIT HIH KHUITIKKe )KOHE 0Jap IbIH 9pTY Pl
MIIIIHIHE TOYeNJUIT iciK >KacyalapbIHBIH MOPQOIOTHICHIHBIH, COHBIMEH KaTap KOMIUIEKCTIK T'PaJUeHT apKbUIBI
epHeKTeyre 00JaThIH THIM/II O©TKI3TIIITIK TEH30pBIHA 9CEPIH 3epTTEeyre MYMKIHAIK Oeperi.

Tyiiin ce3aep: R - chBBIKTHIK mekapamnblK ecen, Puman-I'minpbept ecebi, aHANIUTHKANBIK (QYHKIUS, OTKI3TIIITIK
TEH30PBI, Ka3bIK TOP, KOCY.
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CJIYYAHHBIX KOMIIO3UTOB

PaccmarpuBaercs R - nmuHeliHas kpaeBasi 3ajiada B MHOTOCBSI3HOWM OOJIACTH HA IUIOCKOM TOpe. JTa 3ajavya TeCHO
cBsi3aHa ¢ 3ajaucii Pumana-I'unp0epra 00 aHanuTHUecKuX pyHKIusAX. PaccmMaTpuBaeMas 3a1aua BOSHUKACT B IPOIEAYpPE
YCpeOHEeHHs CIy4allHBIX Cpel C KOMIJIEKCHBIMM KOHCTAHTaMH, BBIPKAIOIIUMU JHUAJIEKTPUUECKUE MPOHULIAEMOCTH
KOMIOHeHTOB. [lomydyeHa HOBas acuMOTOTHUeCKas Qopmyna aias TeH3opa S(GEKTUBHONH ITUAIICKTPUYECKOM
npoHuaeMocti. opMysia COACPKUT PACTIONOKEHHIE BKIIFOUCHUH B CUMBOIMYECKO# (hopme. OOCy)aaeTcst MpUMEHEHUE
MOYYCHHOW (DOPMYIBI U MCCIeAOBaHUA MOP(OIOTHH OIMYXOJIEBHIX KJICTOK B HEYHOPSIIOUYEHHBIX OMOIOTHYECKHX
cpemax. ['THOMHBIE KIETKH MOICIUPYIOTCA SJUIMOTHYCCKUMH BKIIOYCHHUSIMH, 4 HEHPOHHBIC KICTKH — OHUCKaMHu. B
paccMaTtpuBaeMoi 1ByX(a3HOU cpelie 3aBUCUMOCTH TUAIIEKTPUIECKOM MPOHUIIAEMOCTH TIIMOMBI M HEHPOHA OT YaCTOTHI
1 UX pa3Has popMa MOTYT ITO3BOJUTH MCCIICIOBATh BIUSHIEC MOP(OIOTHH OMYXOJIEBEIX KIETOK Ha TEH30DP AP PEKTHBHOMH
IUDIICKTPUIECKOM MPOHUIIAEMOCTH, KOTOPBIH MOJKHO BEIPa3UTh Yepe3 KOMIDICKCHBIH IpaJHeHT.

KuaroueBble ciioBa: R - nuHelHas KpaeBas 3ajada, 3amada Pumana-I mnnOepra, ananutudeckas (GyHKIHSA, TCH30D
MIPOHUIIAEMOCTH, TUIOCKUHN TOP, BKIIOUCHHE.

Introduction

Boundary value problems for differential operators with periodic fast oscillatory coefficients have
applications in mechanics of composites and porous media. According to the homogenization procedure [1]
and its constructive implementation to random composites [2, 3] an averaged equation with constant
coefficients has to be contracted. These constants form the effective tensor used by scientists and engineers to
estimate the macroscopic properties of regular and random dispersed media. Such an estimation creates a large
knowledgebase showing the importance of metamaterial formalism to study different biological problems, in
particular, to recognize glioma areas in brain tissue biopsies [4, 5].

Plane double periodic problems can be considered in the equivalent statement on a flat torus represented
by a parallelogram with glued opposite sides. Therefore, the plane homogenization problem can be considered
as a problem for a multiply connected domain D on torus for differential operators having different form in
different components, D and D,, on torus. Here, D,, (k=1,2,...,N) denote smooth non-overlapping

domains, closures of which complement D to the whole torus. The fundamental parallelogram is called in
applications by Representative VVolume Element (RVE) with inclusions D,, (k =1,2,...,N). The theory of

analytical RVE (aRVE) was summarized in [2] for Laplace’s equation on a flat torus. Asymptotic formulas
were derived for random 2D two-phase composites with circular inclusions D, when permittivity

(conductivity) of components is real. The paper [3] extends these asymptotic formulas to inclusions D, of

other piecewise smooth shapes.

Metamaterial formalism developed in [4, 5] requires formulas similar to [2, 3] but for complex components.
The present paper fills this gap of the aRVE theory and extends the previously derived asymptotic formulas to
the complex component media. The generalized alternating method of Schwarz first proposed by S.G. Mikhlin
[6] and developed in [2, 3] is applied to solve the corresponding boundary value problem. The results can be
applied to highly disordered biological medium in order to describe the macroscopic features for various
concentrations of the healthy and tumor cells per RVE.

Methodology of multi-phase composites
Introduce the complex variable z = x, +ix, on the plane. Consider the unit square periodicity cell Q with

N inclusions D, bounded by the smooth curve L, =0D,. Let a, denote the complex coordinate of the
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gravitational center of D, , and r, =max,., |z—a, | the generalized radius of D,. We consider dispersed
composites [3], when the closed domains (D, w L, ) for k=1,2,...,N are mutually disjoint and

r+r.<la —a,|, kzm((k,m=12,...,N). (1.1)
The concentration of inclusions has the form f = Z:j:ll D, | The host domain is denoted by D. The

polygon curve 0Q and the curves L, are oriented in the counterclockwise direction, hence,

N
oD=0Q-> IL|
Let the permittivity of host is normalized to unity and the permittivity of k th inclusion be a complex
number g =g, +ig/, whereg, =Reg, and g =Img,. One can consider g as the ratio of the

permittivity of the kth inclusion to the permittivity of matrix, where the dimension permittivity can be complex.
From mathematical point of view, we assign complex numbers to the considered domains. Thus, we get the
pairs (D,,¢&,) for k=1,2,...,N and the pair (D,1). One can assume that the constants ¢, take the values

froma set J which contains less than N elements. Let #J =M , i.e., the composite is (M +1) - phases and
g =W, if j=12,...M.

Let u=u'+iu” and u, =u, +iu, denote the complex potentials in D and D,, respectively, where for
instance u'=Reu and u”=1Imu in D. The complex functions U and u, satisfy Laplace’s equation in the

corresponding domains and continuously differentiable in their closures.
The perfect contact between the components is expressed by equations [2]

u(t) = u, (t), Z—Lr‘](t)zgkiink(t), tedD, (k=12...,N), (1.2)

e/l :
where the normal derivative n to L, is used.
n

Following the homogenization theory [1] we have to consider a composite in the plane torus topology.
The function u(t) satisfies the normalized jump conditions per unit periodicity cell Q

u(z+1) —u(z) =1, u(z+i)—u(z)=0. (1.3)
For instance, the first relation (1.3) can be written in the real form as follows
Reu(z+1)-Reu(z) =1, Imu(z+1)—Imu(z) =0. (1.4)

Two complex relations (1.2) can be written in the extended real form

, , ou’ , ou; , ou’
u'(t) =u (), — (@) =g, k(t)_gk “(t),
on on on
au// aul au!! (15)
u'@)=u't), —@)=¢'— )+, —=X(t), tel (k=12,...,N),
) =u(t) 6n() Skﬁn() 8k5n() el ( )

The problem (1.5) can be reduced to an R - linear problem [2, Chapter 1]. This problem refers to
boundary value problem of complex analysis [7-9].

Introduce the non-degenerate real matrix

& &
a = [511 g
k k (16)
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and the vector-functions ¢(z) and ¢, (z) analyticin p and D, respectively. The considered harmonic and
analytic functions are related by equations

_(u'(2)+IV'(2)
(p(Z)—[u,,(Z)HV,,(Z)j, zeD (1.7)
and
1 u, (z) +iv, ()
cok(Z)—E(l +ak)(u;,(z)+ivé,(z)} e D, (1.8)

where V'(z), v"'(z) and v, (z), v/(z) denote the imaginary parts of the vector - functions ¢(z) and ¢, (z),
respectively. The complex flux is defined by means of the derivatives y(z)=¢'(z) and w, (2) = ¢, (2)
hence,

oo
oX,  OX,
Z)= , 2eD, 1.9
w(2) ar_ar € (1.9)
oX,  OX,
and
vu(2)) 1 o 0%
)= =—(l+« , 2eD, 1.10
v, (2) (V/Zk(z)J 2( ) %_i% e D, (1.10)
oX,  OX,

The boundary behavior of analytic vector-functions is conditioned by their integral Cauchy representations.
Following [7-8] we consider the classic space of the Holder continuous functions. The vector-function
w(2), w,(z) are analytic in D, D, and Holder continuous in the closures of the considered domains.

The vector-function ¢(z), ¢, (z) are analytic in D, D, and their derivatives in the closures of the
considered domains satisfy the Holder condition. Introduce the space #;/ of vector-functions analytic in D,
whose derivatives satisfy the Holder condition in D, := D, UL, . In the next section, we use the space H* =
UR_; 25 of vector-functions determined in the closure of D*, where D* = UL D, is the union of non-
overlapping domains. The norm of h = (h,,h,) e can be introduced through the norm of the corresponding
scalar functions || h||= (|| h, |I* + ]I h, ||)¥?, where

Ih; =AUyl +1hy 1L, (1=12). (1.11)

The norms in the space of continuously differentiable functions C* and of Holder continuous
functions H” (0 <y <1) are introduced in the following standard way

Iy =,max, s, 2]+ 11, ) | 112)
and
h.(z,)—-h(z
01, = max sup iR 119
UL T R PR

L #1y
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The space H'* is a Banach space [10]. We will use the contrast matrices

. 1 (lef-1 2g
= — I —Q, I +a 1 = k K . 114
=~ a)lva) = |2{ 2&" |26, | —1} 19

One can check that the eigenvalues of the matrix g, are conjugated numbers

2 =2
& -1 _ g°-1
= , = , 1.15
2 g’ +1 2 g2 +1 (.13)
The conditions (1.5) can be written in the form of vector-matrix R - linear problem
ot)=p,O)—c o ), tel (k=12...,N). (1.16)

We arrive at the following boundary value problem. It is required to find the vector-functions ¢(z) and
@, (z) analyticin D and D, respectively, with the boundary behavior described above. The vector-functions
@(z) and ¢, (z) satisfy the R - linear condition (1.16) and the jump conditions

P(2+1) - 9(2) = & +id,, P(z+1)—9(2) = &, +id,, (1.17)

where & and &, are given constant vectors which model the external flux.

For instance, the vectors
(o) &(o)
1= ) 2= )
0 0 (1.18)

Determine the external flux parallel to the real axis. The undetermined real constant vectors d, and
d, can be found during solution to the problem (1.16)-(1.17).

Let n(t) denote the outward unit normal vector to D, expressed in terms of the complex function
defined on L,. The problem (1.16)-(1.17) can be written in terms of the vector - functions (1.9)-
(1.10)[ 2]

w(t) =y, () -n(tew, (), tel (k=12,...,N). (1.19)

y(z+D)=y(2), w(z+i)=y(2). (1.20)

The general solution of the problem (1.19)-(1.20) is a linear combination

w(@2) =&y @)+ Sy ? (2)

with arbitrary real vectors 3 and & [11].
Remark. The R- linear problem is stated in a classic space [7-8]. Following [9] it can be stated in a Sobolev-
type space and for other types of differential equations [12].

Schwarz’s method

The generalized alternating method of Schwarz [6] was developed and applied in [2, 3] to solve the scalar
R - linear problem. It is obtained from (1.16)- (1.17) by the assumption that the harmonic functions
u(z) and u,(z)are real. The vector-matrix R - linear problem (1.16)-(1.17) can be studied by the same

method by use of the matrix formalism.
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Following [3] we use the Eisenstein functions E,(z) and E,(z) =—E,'(z) related to the Weierstrass
elliptic  functions E (z)=¢(z)—nz and E,(z)=g(z)+x. Consider the matrix norm
Il 6 [Fmax; . 1, |G im |» Where g denote the (I, m)-th element of the matrix .. We consider the
lower order approximation in ¢=max,_, llg || assuming that ¢ is a sufficiently small number.

The scalar R - linear problem was reduced to a system of integral equations [3]. The same arguments can
be applied to the vector-matrix R - linear problem (1.16)-(1.17). The system of integral equation up to
an additive constant vector becomes

0 2)=>" g_miJ'MEl(t—z)dt+(;J, zeD, (k=12,...,N). (1.21)

m=127

The integral equations are considered in the Banach space #£* introduced in the previous section. The
integral operator from the right part of (1.21) is bounded in 2 *[10]. When the vector functions ¢, (z) are

found the complex potential in D is calculated by the integral

p2)=>" Sm IMEl(t—z)dH[éj, zeD. (1.22)

m=1 2 7i

Following the generalize alternating method of Schwarz [3, 6] we find the first order iteration for the
system (1.21)

a _ N i - 3 1 YA
o} (z)_[zm_lzﬂiitEl(t Z)dtgm](o}{oj’ zeD,. (1.23)
The corresponding derivative " (z) =%¢,§”(z) becomes
@) N 1
@ =(Xh.6Fu@+1)| | 2<D, (1.24)

where

ka (Z) =

di_ 1 - 1
= (z)=ﬁ!mtE2(t—z)dt=;Djm E, (t — z)dx,dx,. (1.25)

ow 1
Here, the complex Green formula '[deldxz =— J‘ wdt for a function @(z,Z) continuously
G oG
differentiable in a smooth closed domain G is used.
Estimate the integrals (1.25) in two different cases.
i) Let m =K. The Taylor approximate formula f (x, + Ax) = f(X,)+ f'(X,)Ax with x, =a, —a, and

Ax=(t—a,)—(z—a,) yields

E,(t-2) ~E,(a, -&,) - 2E(a, —a)lt-a,) - (z-a)l (1.26)

The approximation (1.26) is used due to the inequalities [t—a, |<r (tel,),|z—a |<r(zeD,)
and (1.1). Substitute (1.26) into (1.25)

1 2
ka(z) ~ ;[Ez(am _ak) _ZEs(am _ak)(z _ak)]l Dm |_; Es(am _ak)slm’ (1.27)
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where s, denotes the complex static moment of order g of the domain D,

Sy = j (t—a, ) dxdx, =% j (t—a_)(t—a )idt, q=0,1,... (1.28)
D s
ii) Let m= k. Estimate the integrals (1.25) using the approximate formula [3]
1
E,t-2)r ——+, 1.29
2( ) (t _ Z)Z ( )
Substitute (1.29) into (1.25)
Fe(2) = J; (2)+| D, |, (1.30)
where
1 t
J (2)=—|—dt, zeD,. (1.31)
27l L=z

Effective permittivity tensor
The main value used in the macroscopic behavior of media is the transverse effective permittivity tensor

[4,13]
& &
&, :( H 12}. (1.32)
& &
The permittivity tensor &, is symmetric. It can be expressed through the complex gradient
ou, .ou’
Kk +i Kk

Vu, =

o Ox | 2 [Revllk-i-iRelr//ZkJ (1.33)

au,, i ou | & +1—Imy, —ilmy,,
oX, 0%,

Theorem. For transverse effective permittivity tensor (1.32) expressed through the complex gradient
(1.33) the following formula

g =(+2(c)+2(c)1 +22'k\l_lgk2( ReJ, -|ka)

-ImJ, RelJ,
Reso(am_ak) _Im((/‘)(am_ak)j

2 N
+= D ||D
AL YILN S S

*)
2 ~ N
+;Z:k,m:lgkgm(S'lm | D [ =8y | D, )%
( Reg'(a,-a) -Imp'(a, —a,)

+0O(f3).
Cim(a, -a,) —Rep’(am—ao] (e

is valid.
Proof. The following formula was derived in [12-13]

& 1 Rey,, +iRe
o2 g [ ST (1.34)
Ex 0 B,

—Imyy, —1Imy,,

where ¢, has the form (1.15). Analogous formula takes place for the component ¢,, +is,,, where ¢, = &,,.

The first order approximation w" (z) = digolﬁl’ (z) can be found from (1.24)
z
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1 N 1 le. [P -1
W)= " |+ m F (z2), zeD,,
WK ( ) (O] Zm=l|1+€m |2( Zgrln( mk( ) k

Rey, +iRey,, 1 N ReF,,
CImyy —il |0t Zmadn| imF
My — 1My, m Py
and substitute the result into (1.34)

1
(iﬂj — (1+ 225:1% | D, |)(Oj+ ZZ:ngkz:llgm

21

Find the vector

ReF,,
™ ldx dx,.
I(—lkajxi %

Dy m

(1.35)

(1.36)

(1.37)

The integrals from (1.37) can be estimated by application of the approximations (1.27) and (1.30). Consider

again two different cases.
i) Let m=K. Then, (1.27) yields

1
[ Fuu (2)dxdx, =~ Ey(a, ~a,) | D, 1| D, |

Dy

2
_; Es(am _ak)[slm | Dk |_Slk | Dm |] = O -

This formula (1.38) can be written in terms of the Weierstrass functions

[ Fu(@)dxdx, ~| D, || D, |+
Dy

1 1,
;Xo(am _ak)l Dk ” Dm |+;SO (am _ak)(slm | Dk |_Slk | Dm |)
ii) Let m=Kk. Then, equation (1.30) has to be used in the estimation
[ Fe(@)dxdx, ~3,+|D, P
Dy

where
J, = [ I (2)dx,dx,.

Dy

Substituting the approximation (1.38) and (1.40) into (1.37) we obtain

1
(811j :(1+22,11§k | D |+22:|:lz::1gkgm | D 1 Dy, |)(Oj

&y
ReJ,

Req,,
+22:‘:1gk2 {—Im JkJ+22L\‘_lz:_1gkgm( ‘ j

_Imqu

Here, it is assumed that g, = 0 in accordance with the case ii).

Introduce the weighted mean <g> = Zsﬂgk | D, | Then, (1.42) can be written in the form

25

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)
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(:J = (1+2(g)+ 2<g>2)(;j
Iy

_Imqu

(1.43)

2P

Similar to (1.43) we calculate the vector [ J Its value can be obtained from (1.43) by rotation of the

—&x
points a, about 90°. It is equivalent to replacement of a, by ia,. The Weierstrass functions for the square
unit periodicity cell satisfy the relations

9(12) = - p(2), ©'(i2) =i’ (2). (1.44)

The integral J, after the rotation becomes J_k [12]. Then, (1.43) yields

[_‘lj :(1+2<g>+2<g>2)(;j

Re ] Red" (1.45)
€ N eq
425 2 K l1+2 k|
2 [_,m ka 2 ma S [_,mq*mJ
where
. 1 i,
q . (2) :_;So(am -a)| DI D, |+;80 (@, —a)[Sy, | D | =Sy | D []- (1.46)

The vector equations (1.43) and (1.45) can be ultimately written in the extended form (*). Theorem is
proved. The dimension analysis of the above formula in concentration f =ZE‘ m=l| D, | is performed

following [12].

Conclusion and discussion

The main result of the present work consists in the derivation of the analytical asymptotic formula (*) for
the effective permittivity tensor. Many authors declare that such a formula is virtually impossible and perform
numerical computations for some special geometries. One can meet other types of declaration in literature
when a pure numerical procedure is called by “exact solution”. A discussion concerning “exact” and exact
solution can be found in [14-15].

The dependence of &, on the frequency @ is the main suggested criterion to detect the tumor cells and

their fraction [4]. It can be obtained after substitution of the dependencies ¢, = ¢, (@) into the formula (1.15)
for ¢, =¢, (w), next substituted into (1.47). Cancerous (glioma) cells are modeled by elliptic inclusion and
noncancerous (neuron) cells by disks. In the considered two-phase medium, the dependencies of permittivity
g, of glioma and &, of neuron on @ [4] and their different shapes can allow to investigate the impact of the

tumor cells morphology on the tensor &, .
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