МРНТИ 027 УДК 517.927

https://doi.org/10.51889/2959-5894.2023.81.1.002

ON AN ASYMPTOTICAL FORMULA FOR COMPLEX-VALUED PERMITTIVITY OF RANDOM COMPOSITES

Mityushev V. 1,2, Gric T. 3,4,5, Zhunussova Zh. 2,6*, Dosmagulova K. 2,6

¹Faculty of Computer Science and Telecommunications, Cracow University of Technology, Krak'ow, Poland

²Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

³Department of Electronic Systems, Vilnius Tech, Vilnius, Lithuania

⁴Aston Institute of Photonic Technologies, Aston University, Birmingham, UK

⁵Semiconductor Physics Institute, Center for Physical Sciences and Technology, Vilnius, Lithuania

⁶Al-Farabi Kazakh National University, Almaty, Kazakhstan

*e-mail: zhzh@kaznu.kz

Abstract

The R - linear boundary value problem in a multiply connected domain on a flat torus is considered. This problem is closely related to the Riemann-Hilbert problem on analytical functions. The considered problem arises in the homogenization procedure of random media with complex constants, which express the permittivity of components. A new asymptotical formula for the effective permittivity tensor is derived. The formula contains location of inclusions in symbolic form. The application of the derived formula to investigation of the morphology of the tumor cells in disordered biological media is discussed. Glioma cells are modeled by elliptic inclusion and neuron cells by disks. In the considered two-phase medium, the dependencies of permittivity of glioma and neuron on the frequency and their different shapes can allow to investigate the impact of the tumor cells morphology on the effective permittivity tensor expressed through the complex gradient.

Keywords: R - linear boundary value problem, Riemann-Hilbert problem, analytic function, permittivity tensor, flat torus, inclusion.

Аңдатпа

В. Митюшев 1,2 , Т. Грик 3,4,5 , Ж. Жүнісова 2,6* , Қ. Досмағұлова 2,6 1 Информатика және телекоммуникациялар факультеті, Краков технологиялық университеті, Краков қ., Польша

²Математика және математикалық модельдеу институты, Алматы қ., Қазақстан ³Электрондық жүйелер департаменті, Вильнюс Тех, Вильнюс қ., Литва ⁴Астон фотоникалық технологиялар институты, Астон университеті, Бирмингем қ., Ұлыбритания ⁵Жартылай өткізгіштер физика институты, Физика ғылымдары мен технологиялар орталығы, Вильнюс қ., Литва

 6 Әль-Фараби атындағы Қазақ Ұлттық Университеті, Алматы қ., Қазақстан

КЕЗДЕЙСОҚ КОМПОЗИТТЕРДІҢ КОМПЛЕКС МӘНДІ ӨТКІЗГІШТІГІНІҢ АСИМПТОТИКАЛЫҚ ФОРМУЛАСЫ ТУРАЛЫ

Жазық торда көпбайланысты аймақта R - сызықтық шекаралық есеп қарастырылады. Бұл есеп Риман-Гильберттің аналитикалық функциялар туралы есебімен тығыз байланысады. Қарастырылған есеп компоненттердің диэлектрикалық өткізгіштігін білдіретін комплекстік тұрақтылары бар кездейсоқ орталарды орташалау процедурасында туындайды. Тиімді диэлектрикалық өткізгіш тензоры үшін жаңа асимптотикалық формула құрылды. Формула символдық формадағы қосындылардың орналасуын қамтиды. Алынған формуланы реттелмеген биологиялық ортадағы ісік жасушаларының морфологиясын зерттеуге қолдануы қарастырылады. Глиома жасушалар эллиптикалық қосындылармен және нейрондық жасушалар дискілер арқылы модельденеді. Қарастырылып отырған екі фазалы ортада глиома мен нейронның өткізгіштігінің жиілікке және олардың әртүрлі пішініне тәуелділігі ісік жасушаларының морфологиясының, сонымен қатар комплекстік градиент арқылы өрнектеуге болатын тиімді өткізгіштік тензорына әсерін зерттеуге мүмкіндік береді.

Түйін сөздер: R - сызықтық шекаралық есеп, Риман-Гильберт есебі, аналитикалық функция, өткізгіштік тензоры, жазық тор, қосу.

Аннотация

В. Митюшев ^{1,2}, Т. Грик ^{3,4,5}, Ж. Жунусова ^{2,6*}, Қ. Досмағұлова ^{2,6}

 1 Факультет компьютерных наук и телекоммуникаций, Краковский политехнический университет, г. Краков, Польша

²Институт математики и математического моделирования, г.Алматы, Казахстан ³Отдел электронных систем, Вильнюс Тех, г. Вильнюс, Литва

⁴Астонский институт фотонных технологий, Астонский университет, г. Бирмингем, Великобритания ⁵Институт физики полупроводников, Центр физических наук и технологий, г. Вильнюс, Литва ⁶Казахский национальный университет им. аль-Фараби, г. Алматы, Казахстан

ОБ АСИМПТОТИЧЕСКОЙ ФОРМУЛЕ ДЛЯ КОМПЛЕКСНОЗНАЧНОЙ ПРОНИЦАЕМОСТИ СЛУЧАЙНЫХ КОМПОЗИТОВ

Рассматривается R - линейная краевая задача в многосвязной области на плоском торе. Эта задача тесно связана с задачей Римана-Гильберта об аналитических функциях. Рассматриваемая задача возникает в процедуре усреднения случайных сред с комплексными константами, выражающими диэлектрические проницаемости компонентов. Получена новая асимптотическая формула для тензора эффективной диэлектрической проницаемости. Формула содержит расположение включений в символической форме. Обсуждается применение полученной формулы для исследования морфологии опухолевых клеток в неупорядоченных биологических средах. Глиомные клетки моделируются эллиптическими включениями, а нейронные клетки — дисками. В рассматриваемой двухфазной среде зависимости диэлектрической проницаемости глиомы и нейрона от частоты и их разная форма могут позволить исследовать влияние морфологии опухолевых клеток на тензор эффективной диэлектрической проницаемости, который можно выразить через комплексный градиент.

Ключевые слова: R - линейная краевая задача, задача Римана-Гильберта, аналитическая функция, тензор проницаемости, плоский тор, включение.

Introduction

Boundary value problems for differential operators with periodic fast oscillatory coefficients have applications in mechanics of composites and porous media. According to the homogenization procedure [1] and its constructive implementation to random composites [2, 3] an averaged equation with constant coefficients has to be contracted. These constants form the effective tensor used by scientists and engineers to estimate the macroscopic properties of regular and random dispersed media. Such an estimation creates a large knowledgebase showing the importance of metamaterial formalism to study different biological problems, in particular, to recognize glioma areas in brain tissue biopsies [4, 5].

Plane double periodic problems can be considered in the equivalent statement on a flat torus represented by a parallelogram with glued opposite sides. Therefore, the plane homogenization problem can be considered as a problem for a multiply connected domain D on torus for differential operators having different form in different components, D and D_k , on torus. Here, D_k , $(k=1,2,\ldots,N)$ denote smooth non-overlapping domains, closures of which complement D to the whole torus. The fundamental parallelogram is called in applications by Representative Volume Element (RVE) with inclusions D_k , $(k=1,2,\ldots,N)$. The theory of analytical RVE (aRVE) was summarized in [2] for Laplace's equation on a flat torus. Asymptotic formulas were derived for random D_k two-phase composites with circular inclusions D_k when permittivity (conductivity) of components is real. The paper [3] extends these asymptotic formulas to inclusions D_k of other piecewise smooth shapes.

Metamaterial formalism developed in [4, 5] requires formulas similar to [2, 3] but for complex components. The present paper fills this gap of the aRVE theory and extends the previously derived asymptotic formulas to the complex component media. The generalized alternating method of Schwarz first proposed by S.G. Mikhlin [6] and developed in [2, 3] is applied to solve the corresponding boundary value problem. The results can be applied to highly disordered biological medium in order to describe the macroscopic features for various concentrations of the healthy and tumor cells per RVE.

Methodology of multi-phase composites

Introduce the complex variable $z = x_1 + ix_2$ on the plane. Consider the unit square periodicity cell Q with N inclusions D_k bounded by the smooth curve $L_k = \partial D_k$. Let a_k denote the complex coordinate of the

gravitational center of D_k , and $r_k = \max_{z \in D_k} |z - a_k|$ the generalized radius of D_k . We consider dispersed composites [3], when the closed domains $(D_k \cup L_k)$ for k = 1, 2, ..., N are mutually disjoint and

$$r_k + r_m < |a_k - a_m|, \quad k \neq m \ (k, m = 1, 2, ..., N).$$
 (1.1)

The concentration of inclusions has the form $f = \sum_{k=1}^N |D_k|$. The host domain is denoted by D. The polygon curve ∂Q and the curves L_k are oriented in the counterclockwise direction, hence, $\partial D = \partial Q - \sum_{k=1}^N |L_k|$.

Let the permittivity of host is normalized to unity and the permittivity of k th inclusion be a complex number $\varepsilon_k = \varepsilon_k' + i\varepsilon_k''$, where $\varepsilon_k' = \operatorname{Re} \varepsilon_k$ and $\varepsilon_k'' = \operatorname{Im} \varepsilon_k$. One can consider ε_k as the ratio of the permittivity of the kth inclusion to the permittivity of matrix, where the dimension permittivity can be complex. From mathematical point of view, we assign complex numbers to the considered domains. Thus, we get the pairs (D_k, ε_k) for k = 1, 2, ..., N and the pair (D, 1). One can assume that the constants ε_k take the values from a set J which contains less than N elements. Let #J = M, i.e., the composite is (M+1) - phases and $\varepsilon_k = \varepsilon^{(j)}$, if j = 1, 2, ... M.

Let u = u' + iu'' and $u_k = u'_k + iu''_k$ denote the complex potentials in D and D_k , respectively, where for instance u' = Re u and u'' = Im u in D. The complex functions u and u_k satisfy Laplace's equation in the corresponding domains and continuously differentiable in their closures.

The perfect contact between the components is expressed by equations [2]

$$u(t) = u_k(t), \quad \frac{\partial u}{\partial \mathbf{n}}(t) = \varepsilon_k \frac{\partial u_k}{\partial \mathbf{n}}(t), \quad t \in \partial D_k \qquad (k = 1, 2, ..., N), \tag{1.2}$$

where the normal derivative $\frac{\partial u}{\partial \mathbf{n}}$ to L_k is used.

Following the homogenization theory [1] we have to consider a composite in the plane torus topology. The function u(t) satisfies the normalized jump conditions per unit periodicity cell Q

$$u(z+1) - u(z) = 1,$$
 $u(z+i) - u(z) = 0.$ (1.3)

For instance, the first relation (1.3) can be written in the real form as follows

$$\operatorname{Re} u(z+1) - \operatorname{Re} u(z) = 1, \quad \operatorname{Im} u(z+1) - \operatorname{Im} u(z) = 0.$$
 (1.4)

Two complex relations (1.2) can be written in the extended real form

$$u'(t) = u'_{k}(t), \quad \frac{\partial u'}{\partial n}(t) = \varepsilon'_{k} \frac{\partial u'_{k}}{\partial n}(t) - \varepsilon''_{k} \frac{\partial u''_{k}}{\partial n}(t),$$

$$u''(t) = u''_{k}(t), \quad \frac{\partial u''}{\partial n}(t) = \varepsilon''_{k} \frac{\partial u'_{k}}{\partial n}(t) + \varepsilon'_{k} \frac{\partial u''_{k}}{\partial n}(t), \quad t \in l_{k} (k = 1, 2, ..., N),$$

$$(1.5)$$

The problem (1.5) can be reduced to an \mathbf{R} - linear problem [2, Chapter 1]. This problem refers to boundary value problem of complex analysis [7-9].

Introduce the non-degenerate real matrix

$$\boldsymbol{\alpha}_{k} = \begin{pmatrix} \varepsilon_{k}' & -\varepsilon_{k}'' \\ \varepsilon_{k}'' & \varepsilon_{k}' \end{pmatrix} \tag{1.6}$$

and the vector-functions $\varphi(z)$ and $\varphi_k(z)$ analytic in D and D_k respectively. The considered harmonic and analytic functions are related by equations

$$\varphi(z) = \begin{pmatrix} u'(z) + iv'(z) \\ u''(z) + iv''(z) \end{pmatrix}, \quad z \in D$$
(1.7)

and

$$\varphi_{k}(z) = \frac{1}{2} (I + \alpha_{k}) \begin{pmatrix} u'_{k}(z) + iv'_{k}(z) \\ u''_{k}(z) + iv''_{k}(z) \end{pmatrix}, \quad z \in D_{k}$$
(1.8)

where v'(z), v''(z) and $v'_k(z)$, $v''_k(z)$ denote the imaginary parts of the vector - functions $\varphi(z)$ and $\varphi_k(z)$, respectively. The complex flux is defined by means of the derivatives $\psi(z) = \varphi'(z)$ and $\psi_k(z) = \varphi'_k(z)$ hence,

$$\psi(z) = \begin{pmatrix} \frac{\partial u'}{\partial x_1} - i \frac{\partial u'}{\partial x_2} \\ \frac{\partial u''}{\partial x_1} - i \frac{\partial u''}{\partial x_2} \end{pmatrix}, \quad z \in D,$$
(1.9)

and

$$\psi_{k}(z) \equiv \begin{pmatrix} \psi_{1k}(z) \\ \psi_{2k}(z) \end{pmatrix} = \frac{1}{2} (I + \boldsymbol{\alpha}_{k}) \begin{pmatrix} \frac{\partial u_{k}'}{\partial x_{1}} - i \frac{\partial u_{k}'}{\partial x_{2}} \\ \frac{\partial u_{k}''}{\partial x_{1}} - i \frac{\partial u_{k}''}{\partial x_{2}} \end{pmatrix}, \quad z \in D_{k},$$

$$(1.10)$$

The boundary behavior of analytic vector-functions is conditioned by their integral Cauchy representations. Following [7-8] we consider the classic space of the Hölder continuous functions. The vector-function $\psi(z)$, $\psi_k(z)$ are analytic in D, D_k and Hölder continuous in the closures of the considered domains.

The vector-function $\varphi(z)$, $\varphi_k(z)$ are analytic in D, D_k and their derivatives in the closures of the considered domains satisfy the Hölder condition. Introduce the space \mathcal{H}_k^+ of vector-functions analytic in D_k whose derivatives satisfy the Hölder condition in $\overline{D}_k := D_k \cup L_k$. In the next section, we use the space $\mathcal{H}^+ = \bigcup_{k=1}^N \mathcal{H}_k^+$ of vector-functions determined in the closure of D^+ , where $D^+ = \bigcup_{k=1}^N D_k$ is the union of non-overlapping domains. The norm of $h = (h_1, h_2) \in \mathcal{H}^+$ can be introduced through the norm of the corresponding scalar functions $||h|| = (||h_1||^2 + ||h_2||^2)^{1/2}$, where

$$||h_j|| = (||h_j||_{C^1} + ||h_j||_{H^{\gamma}})^{1/2}$$
 $(j = 1, 2).$ (1.11)

The norms in the space of continuously differentiable functions C^1 and of Hölder continuous functions H^{γ} $(0 < \gamma \le 1)$ are introduced in the following standard way

$$\|h_{j}\|_{C^{1}} = \max_{k=1,2,...N} \left(\sup_{z \in \bar{D}_{k}} |h_{j}(z)| + \sup_{z \in \bar{D}_{k}} |h'_{j}(z)| \right)$$
(1.12)

and

$$\|h_{j}\|_{H^{\gamma}} = \max_{k=1,2,\dots N} \sup_{\substack{z_{1},z_{2} \in \bar{D}_{k} \\ z_{1} \neq z_{2}}} \frac{|h_{j}(z_{1}) - h_{j}(z_{2})|}{|z_{1} - z_{2}|^{\gamma}}.$$
(1.13)

The space \mathcal{H}^+ is a Banach space [10]. We will use the contrast matrices

$$\boldsymbol{\varsigma}_{k} = -(I - \boldsymbol{\alpha}_{k})(I + \boldsymbol{\alpha}_{k})^{-1} = \frac{1}{|1 + \varepsilon_{k}|^{2}} \begin{pmatrix} |\varepsilon_{k}|^{2} - 1 & 2\varepsilon_{k}^{"} \\ -2\varepsilon_{k}^{"} & |2\varepsilon_{k}|^{2} - 1 \end{pmatrix}. \tag{1.14}$$

One can check that the eigenvalues of the matrix ϱ_k are conjugated numbers

$$\varsigma_{k} = \frac{\varepsilon_{k}^{2} - 1}{\varepsilon_{k}^{2} + 1}, \quad \bar{\varsigma}_{k} = \frac{\bar{\varepsilon}_{k}^{2} - 1}{\bar{\varepsilon}_{k}^{2} + 1}.$$
(1.15)

The conditions (1.5) can be written in the form of vector-matrix \mathbf{R} - linear problem

$$\varphi(t) = \varphi_k(t) - \zeta_k \overline{\varphi_k(t)}, \qquad t \in L_k \ (k = 1, 2, ..., N). \tag{1.16}$$

We arrive at the following boundary value problem. It is required to find the vector-functions $\varphi(z)$ and $\varphi_k(z)$ analytic in D and D_k respectively, with the boundary behavior described above. The vector-functions $\varphi(z)$ and $\varphi_k(z)$ satisfy the **R** - linear condition (1.16) and the jump conditions

$$\varphi(z+1) - \varphi(z) = \xi_1 + id_1, \qquad \varphi(z+i) - \varphi(z) = \xi_2 + id_2,$$
 (1.17)

where ξ_1 and ξ_2 are given constant vectors which model the external flux.

For instance, the vectors

$$\xi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \xi_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{1.18}$$

Determine the external flux parallel to the real axis. The undetermined real constant vectors d_1 and d_2 can be found during solution to the problem (1.16)-(1.17).

Let n(t) denote the outward unit normal vector to D_k expressed in terms of the complex function defined on L_k . The problem (1.16)-(1.17) can be written in terms of the vector - functions (1.9)-(1.10)[2]

$$\psi(t) = \psi_k(t) - \overline{n^2(t)} \varsigma_k \overline{\psi_k(t)}, \quad t \in L_k(k = 1, 2, ..., N).$$
 (1.19)

$$\psi(z+1) = \psi(z), \quad \psi(z+i) = \psi(z). \tag{1.20}$$

The general solution of the problem (1.19)-(1.20) is a linear combination

$$\psi(z) = \xi_1 \psi^{(1)}(z) + \xi_2 \psi^{(2)}(z)$$

with arbitrary real vectors ξ_1 and ξ_2 [11].

Remark. The **R-** linear problem is stated in a classic space [7-8]. Following [9] it can be stated in a Sobolev-type space and for other types of differential equations [12].

Schwarz's method

The generalized alternating method of Schwarz [6] was developed and applied in [2, 3] to solve the scalar \mathbf{R} - linear problem. It is obtained from (1.16)-(1.17) by the assumption that the harmonic functions u(z) and $u_k(z)$ are real. The vector-matrix \mathbf{R} - linear problem (1.16)-(1.17) can be studied by the same method by use of the matrix formalism.

Following [3] we use the Eisenstein functions $E_1(z)$ and $E_2(z) = -E_1'(z)$ related to the Weierstrass elliptic functions $E_1(z) = \zeta(z) - \pi z$ and $E_2(z) = \wp(z) + \pi$. Consider the matrix norm $\|\zeta_k\| = \max_{l,m=1,2} \|\zeta_{k,lm}\|$, where $\zeta_{k,lm}$ denote the (l,m)-th element of the matrix ζ_k . We consider the lower order approximation in $\zeta = \max_{k=1,2,\dots,N} \|\zeta_k\|$ assuming that ζ is a sufficiently small number. The scalar \mathbf{R} -linear problem was reduced to a system of integral equations [3]. The same arguments can be applied to the vector-matrix \mathbf{R} -linear problem (1.16)-(1.17). The system of integral equation up to an additive constant vector becomes

$$\varphi_{k}(z) = \sum_{m=1}^{N} \frac{\varsigma_{m}}{2\pi i} \int_{L_{m}} \overline{\varphi_{m}(t)} E_{1}(t-z) dt + \begin{pmatrix} z \\ 0 \end{pmatrix}, \quad z \in D_{k} \ (k=1,2,...,N).$$
 (1.21)

The integral equations are considered in the Banach space \mathcal{H}^+ introduced in the previous section. The integral operator from the right part of (1.21) is bounded in \mathcal{H}^+ [10]. When the vector functions $\varphi_k(z)$ are found the complex potential in D is calculated by the integral

$$\varphi(z) = \sum_{m=1}^{N} \frac{\zeta_m}{2\pi i} \int_{L_m} \overline{\varphi_m(t)} E_1(t-z) dt + \begin{pmatrix} z \\ 0 \end{pmatrix}, \quad z \in D.$$
 (1.22)

Following the generalize alternating method of Schwarz [3, 6] we find the first order iteration for the system (1.21)

$$\varphi_k^{(1)}(z) = \left(\sum_{m=1}^N \frac{1}{2\pi i} \int_{L_m} \bar{t} E_1(t-z) dt \varsigma_m\right) \begin{pmatrix} 1\\0 \end{pmatrix} + \begin{pmatrix} z\\0 \end{pmatrix}, \quad z \in D_k.$$

$$(1.23)$$

The corresponding derivative $\psi_k^{(1)}(z) = \frac{d}{dz} \varphi_k^{(1)}(z)$ becomes

$$\psi_k^{(1)}(z) = \left(\sum_{m=1}^N \varsigma_m F_{mk}(z) + I\right) \begin{pmatrix} 1\\0 \end{pmatrix}, \ z \in D_k, \tag{1.24}$$

where

$$F_{mk}(z) = \frac{dI_{mk}}{dz}(z) = \frac{1}{2\pi i} \int_{L_{m}} \bar{t} E_{2}(t-z) dt = \frac{1}{\pi} \int_{D_{m}} E_{2}(t-z) dx_{1} dx_{2}.$$
 (1.25)

Here, the complex Green formula $\int_G \frac{\partial \omega}{\partial \overline{z}} dx_1 dx_2 = \frac{1}{2i} \int_{\partial G} \omega dt$ for a function $\omega(z, \overline{z})$ continuously

differentiable in a smooth closed domain G is used.

Estimate the integrals (1.25) in two different cases.

i) Let $m \neq k$. The Taylor approximate formula $f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$ with $x_0 = a_m - a_k$ and $\Delta x = (t - a_m) - (z - a_k)$ yields

$$E_2(t-z) \approx E_2(a_m - a_k) - 2E_3(a_m - a_k)[(t - a_m) - (z - a_k)]. \tag{1.26}$$

The approximation (1.26) is used due to the inequalities $|t-a_m| \le r_m (t \in L_m)$, $|z-a_k| \le r_k (z \in D_k)$ and (1.1). Substitute (1.26) into (1.25)

$$F_{mk}(z) \approx \frac{1}{\pi} \left[E_2(a_m - a_k) - 2E_3(a_m - a_k)(z - a_k) \right] |D_m| - \frac{2}{\pi} E_3(a_m - a_k)_{s_{1m}}, \tag{1.27}$$

where s_{qm} denotes the complex static moment of order q of the domain D_m

$$S_{qn} = \int_{D_m} (t - a_m)^q dx_1 dx_2 = \frac{1}{2i} \int_{L_m} \overline{(t - a_m)} (t - a_m)^q dt, \quad q = 0, 1, \dots$$
 (1.28)

ii) Let $m \neq k$. Estimate the integrals (1.25) using the approximate formula [3]

$$E_2(t-z) \approx \frac{1}{(t-z)^2} + \pi,$$
 (1.29)

Substitute (1.29) into (1.25)

$$F_{\iota\iota}(z) \approx J'_{\iota}(z) + |D_{\iota}|,$$
 (1.30)

where

$$J_k(z) = \frac{1}{2\pi i} \int_{L_k} \frac{\overline{t}}{t - z} dt, \quad z \in D_k.$$
(1.31)

Effective permittivity tensor

The main value used in the macroscopic behavior of media is the transverse effective permittivity tensor [4, 13]

$$\varepsilon_{\perp} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} \\ \varepsilon_{21} & \varepsilon_{22} \end{pmatrix}. \tag{1.32}$$

The permittivity tensor ε_{\perp} is symmetric. It can be expressed through the complex gradient

$$\nabla u_{k} \equiv \begin{pmatrix} \frac{\partial u_{k}'}{\partial x_{1}} + i \frac{\partial u_{k}''}{\partial x_{1}} \\ \frac{\partial u_{k}'}{\partial x_{2}} + i \frac{\partial u_{k}''}{\partial x_{2}} \end{pmatrix} = \frac{2}{\varepsilon_{k} + 1} \begin{pmatrix} \operatorname{Re} \psi_{1k} + i \operatorname{Re} \psi_{2k} \\ -\operatorname{Im} \psi_{1k} - i \operatorname{Im} \psi_{2k} \end{pmatrix}.$$
(1.33)

Theorem. For transverse effective permittivity tensor (1.32) expressed through the complex gradient (1.33) the following formula

$$\varepsilon_{\perp} = (1 + 2\langle \varsigma \rangle + 2\langle \varsigma \rangle^{2})I + 2\sum_{k=1}^{N} \varsigma_{k}^{2} \begin{pmatrix} \operatorname{Re} J_{k} & -\operatorname{Im} J_{k} \\ -\operatorname{Im} J_{k} & \operatorname{Re} J_{k} \end{pmatrix} \\
+ \frac{2}{\pi} \sum_{k,m=1}^{N} \varsigma_{k} \varsigma_{m} |D_{k}| |D_{m}| \begin{pmatrix} \operatorname{Re} \wp(a_{m} - a_{k}) & -\operatorname{Im} \wp(a_{m} - a_{k}) \\ -\operatorname{Im} \wp(a_{m} - a_{k}) & -\operatorname{Re} \wp(a_{m} - a_{k}) \end{pmatrix} \\
+ \frac{2}{\pi} \sum_{k,m=1}^{N} \varsigma_{k} \varsigma_{m} (s_{1m} |D_{k}| - s_{1k} |D_{m}|) \times \\
\begin{pmatrix} \operatorname{Re} \wp'(a_{m} - a_{k}) & -\operatorname{Im} \wp'(a_{m} - a_{k}) \\ -\operatorname{Im} \wp'(a_{m} - a_{k}) & -\operatorname{Re} \wp'(a_{m} - a_{k}) \end{pmatrix} + O(f^{3} \varsigma^{3}).$$
(*)

is valid.

Proof. The following formula was derived in [12-13]

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \sum_{k=1}^{N} \zeta_k \int_{D_k} \begin{pmatrix} \operatorname{Re} \psi_{1k} + i \operatorname{Re} \psi_{2k} \\ -\operatorname{Im} \psi_{1k} - i \operatorname{Im} \psi_{2k} \end{pmatrix} dx_1 dx_2, \tag{1.34}$$

where ζ_k has the form (1.15). Analogous formula takes place for the component $\varepsilon_{22} + i\varepsilon_{12}$, where $\varepsilon_{12} = \varepsilon_{21}$.

The first order approximation $\psi_k^{(1)}(z) = \frac{d}{dz} \varphi_k^{(1)}(z)$ can be found from (1.24)

$$\psi_k^{(1)}(z) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \sum_{m=1}^N \frac{1}{|1 + \varepsilon_m|^2} \begin{pmatrix} |\varepsilon_m|^2 - 1 \\ 2\varepsilon_m'' \end{pmatrix} F_{mk}(z), \quad z \in D_k,$$
 (1.35)

Find the vector

$$\begin{pmatrix}
\operatorname{Re}\psi_{1k} + i\operatorname{Re}\psi_{2k} \\
-\operatorname{Im}\psi_{1k} - i\operatorname{Im}\psi_{2k}
\end{pmatrix} = \begin{pmatrix}
1 \\
0
\end{pmatrix} + \sum_{m=1}^{N} \zeta_{m} \begin{pmatrix} \operatorname{Re}F_{mk} \\
-\operatorname{Im}F_{mk}
\end{pmatrix}$$
(1.36)

and substitute the result into (1.34)

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{21} \end{pmatrix} = \left(1 + 2\sum_{k=1}^{N} \zeta_{k} \mid D_{k} \mid \right) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2\sum_{k=1}^{N} \zeta_{k} \sum_{k=1}^{N} \zeta_{m} \int_{D_{k}} \begin{pmatrix} \operatorname{Re} F_{mk} \\ -\operatorname{Im} F_{mk} \end{pmatrix} dx_{1} dx_{2}.$$
 (1.37)

The integrals from (1.37) can be estimated by application of the approximations (1.27) and (1.30). Consider again two different cases.

i) Let $m \neq k$. Then, (1.27) yields

$$\int_{D_{k}} F_{mk}(z) dx_{1} dx_{2} \approx \frac{1}{\pi} E_{2}(a_{m} - a_{k}) |D_{k}| |D_{m}|
- \frac{2}{\pi} E_{3}(a_{m} - a_{k}) [s_{1m}|D_{k}| - s_{1k}|D_{m}|] := q_{mk}.$$
(1.38)

This formula (1.38) can be written in terms of the Weierstrass functions

$$\int_{D_{k}} F_{mk}(z) dx_{1} dx_{2} \approx |D_{k}| |D_{m}| + \frac{1}{\pi} \wp(a_{m} - a_{k}) |D_{k}| |D_{m}| + \frac{1}{\pi} \wp'(a_{m} - a_{k}) (S_{1m} |D_{k}| - S_{1k} |D_{m}|).$$
(1.39)

ii) Let m = k. Then, equation (1.30) has to be used in the estimation

$$\int_{D_k} F_{kk}(z) dx_1 dx_2 \approx J_k + |D_m|^2$$
(1.40)

where

$$J_{k} = \int_{D_{k}} J'_{k}(z)dx_{1}dx_{2}. \tag{1.41}$$

Substituting the approximation (1.38) and (1.40) into (1.37) we obtain

$$\begin{pmatrix}
\varepsilon_{11} \\
\varepsilon_{21}
\end{pmatrix} = \left(1 + 2\sum_{k=1}^{N} \zeta_{k} \mid D_{k} \mid + 2\sum_{k=1}^{N} \sum_{m=1}^{N} \zeta_{k} \zeta_{m} \mid D_{k} \mid \mid D_{m} \mid \right) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2\sum_{k=1}^{N} \zeta_{k}^{2} \begin{pmatrix} \operatorname{Re} J_{k} \\ -\operatorname{Im} J_{k} \end{pmatrix} + 2\sum_{k=1}^{N} \sum_{m=1}^{N} \zeta_{k} \zeta_{m} \begin{pmatrix} \operatorname{Re} q_{mk} \\ -\operatorname{Im} q_{mk} \end{pmatrix}. \tag{1.42}$$

Here, it is assumed that $q_{kk} = 0$ in accordance with the case ii).

Introduce the weighted mean $\langle \varsigma \rangle = \sum_{k=1}^{N} \varsigma_k \mid D_k \mid$. Then, (1.42) can be written in the form

$$\begin{pmatrix}
\varepsilon_{11} \\
\varepsilon_{21}
\end{pmatrix} = \left(1 + 2\langle \varsigma \rangle + 2\langle \varsigma \rangle^{2}\right) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2\sum_{k=1}^{N} \varsigma_{k}^{2} \begin{pmatrix} \operatorname{Re} J_{k} \\ \operatorname{Im} J_{k} \end{pmatrix} + 2\sum_{k,m=1}^{N} \varsigma_{k} \varsigma_{m} \begin{pmatrix} \operatorname{Re} q_{mk} \\ -\operatorname{Im} q_{mk} \end{pmatrix}.$$
(1.43)

Similar to (1.43) we calculate the vector $\begin{pmatrix} \varepsilon_{12} \\ -\varepsilon_{22} \end{pmatrix}$. Its value can be obtained from (1.43) by rotation of the

points a_k about 90°. It is equivalent to replacement of a_k by ia_k . The Weierstrass functions for the square unit periodicity cell satisfy the relations

$$\wp(iz) = -\wp(z), \qquad \wp'(iz) = i\wp'(z). \tag{1.44}$$

The integral J_k after the rotation becomes $\overline{J_k}$ [12]. Then, (1.43) yields

$$\begin{pmatrix}
\varepsilon_{22} \\
-\varepsilon_{12}
\end{pmatrix} = \left(1 + 2\langle \varsigma \rangle + 2\langle \varsigma \rangle^{2}\right) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2\sum_{k=1}^{N} \varsigma_{k}^{2} \begin{pmatrix} \operatorname{Re} J_{k} \\ -\operatorname{Im} J_{k} \end{pmatrix} + 2\sum_{k,m=1}^{N} \varsigma_{k} \varsigma_{m} \begin{pmatrix} \operatorname{Re} q_{mk}^{*} \\ -\operatorname{Im} q_{mk}^{*} \end{pmatrix}, \tag{1.45}$$

where

$$q_{mk}^{*}(z) = -\frac{1}{\pi} \wp(a_{m} - a_{k}) |D_{k}| |D_{m}| + \frac{i}{\pi} \wp'(a_{m} - a_{k}) [s_{1m}|D_{k}| - s_{1k}|D_{k}|].$$
(1.46)

The vector equations (1.43) and (1.45) can be ultimately written in the extended form (*). Theorem is proved. The dimension analysis of the above formula in concentration $f = \sum_{k,m=1}^{N} |D_k|$ is performed following [12].

Conclusion and discussion

The main result of the present work consists in the derivation of the analytical asymptotic formula (*) for the effective permittivity tensor. Many authors declare that such a formula is virtually impossible and perform numerical computations for some special geometries. One can meet other types of declaration in literature when a pure numerical procedure is called by "exact solution". A discussion concerning "exact" and exact solution can be found in [14-15].

The dependence of $\boldsymbol{\varepsilon}_{\perp}$ on the frequency $\boldsymbol{\omega}$ is the main suggested criterion to detect the tumor cells and their fraction [4]. It can be obtained after substitution of the dependencies $\boldsymbol{\varepsilon}_k = \boldsymbol{\varepsilon}_k(\boldsymbol{\omega})$ into the formula (1.15) for $\boldsymbol{\varepsilon}_k = \boldsymbol{\varepsilon}_k(\boldsymbol{\omega})$, next substituted into (1.47). Cancerous (glioma) cells are modeled by elliptic inclusion and noncancerous (neuron) cells by disks. In the considered two-phase medium, the dependencies of permittivity $\boldsymbol{\varepsilon}_1$ of glioma and $\boldsymbol{\varepsilon}_2$ of neuron on $\boldsymbol{\omega}$ [4] and their different shapes can allow to investigate the impact of the tumor cells morphology on the tensor $\boldsymbol{\varepsilon}_{\perp}$.

Acknowledgements

This research, V. Mityushev, Zh. Zhunussova and K. Dosmagulova is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856381). Tatjana Gric was supported by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No 713694.

References:

- 1 Nawalaniec W., Classifying and analysis of random composites using structural sums feature vector, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, -2019. -Vol. 475, No. 2225, 20180698. https://doi.org/10.1098/rspa.2018.0698
- 2 Gluzman S., Mityushev V., Nawalaniec W. Computational Analysis of Structured Media. Academic Press, Elsevier, Amsterdam, 2018.
- 3 Mityushev, V., Rylko, N. Effective properties of two-dimensional dispersed composites. Part I. Schwarz's alternating method // Computers and Mathematics with Applications. -2022. -Vol. 111, No. 5, -P. 50-60.
- 4 Gric T., Sokolovski S.G., Navolokin N., Semyachkina-Glushkovskaya O., and Rafailov E.U., Metamaterial formalism approach for advancing the recognition of glioma areas in brain tissue biopsies. Opt. Mater. Express 10, 2020. -P.1607-1615
- 5 Zhang Z., Ding H., Yan X., Liang L., Wei D., Wang M., Yang Q., and Yao J., Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency // Opt. Mater. Express. -2018. -Vol. 8, No. 3, -P. 659–667.
- 6 Mikhlin, S.G. Integral equations: and their applications to certain problems in mechanics, mathematical physics and technology. Elsevier. 2014.
 - 7 Gakhov F.D., Boundary Value Problems, Elsevier, 2014. -627p.
- 8 Huang L, Yuan H., Zhao H. An FEM-based homogenization method for orthogonal lattice metamaterials within micropolar elasticity // International Journal of Mechanical Sciences, -2023. -Vol. 238, 107836, https://doi.org/10.1016/j.ijmecsci.2022.107836
 - 9 Bliev N.K., Generalized Analytic Functions in Fractional Spaces. Longman, Harlow, 1997. -160p.
- 10 Mityushev V., Rogosin S., Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions: Theory and Applications, Chapman & Hall / CRC, Monographs and Surveys in Pure and Applied Mathematics,

Boca Raton etc. 2000.

- 11 Mityushev V., R-linear problem on torus and its application to composites // Complex Variables. -2005. -Vol. 50, No. 7-10, -P. 621-630.
- 12 Kal'menov T.S., Sadybekov M.A. On a Frankl-type problem for a mixed parabolic-hyperbolic equation // Siberian Mathematical Journal, -2017. -Vol. 58, No. 2, -P. 227-231.
- 13 Mityushev, V., Zhunussova, Z. Optimal Random Packing of Spheres and Extremal Effective Conductivity // Symmetry, -2021. -Vol. 13, No. 6, 1063 https://doi.org/10.3390/sym13061063
- 14 Andrianov I., Mityushev V., "Exact and "exact" formulae in the theory of composites," in Modern Problems in Applied Analysis. Trends in Mathematics, P. Dryga's, S. Rogosin, Ed, Birkh"auser, Cham. (2018).
- 15 Andrianov I., Gluzman S., Mityushev V., Mechanics and Physics of Structured Media: Asymptotic and Integral Methods of Leonid Filshtinsky. -Academic Press, London, 2022. -503p.