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Abstract 

In this paper considered a group of unitriangular matrices is vulnerable to an attack based on the efficient method of 

computation of an unknown exponent m in a matrix equality A = Bm (solution of the discrete logarithm problem) in a 

group of one-dimensional matrices. We show that the system of the polylinear crypto raptly using nilpotent groups 

proposed by Kahrobaei  together with Italian associates A. Tortora and M. Tota  proves vulnerable. This vulnerability is 

a result of the specific structure of unitriangular matrices, which can be exploited by attackers to efficiently compute the 

unknown exponent m. This opens up opportunities for attacking the system and compromising data security. Unitriangular 

matrices play an important role in cryptography, their use helps ensure system security and makes it a popular basis for 

cryptographic protocols such as Diffie-Hellman key exchange and digital signatures. In these protocols, system security 

is based on the assumption that it is computationally difficult to find a discrete algorithm of the elements involved. 

However, advacnes in computing power and algorithmic techniques have led to the development of more efficient 

algorithms for solving discrete logarithm problems using unitriangular matrices in certain groups, which poses a security 

threat to these protocols. The proposed work provides a cryptographic analysis confirming the vulnerability of 

unitriangular matrices. 

Keywords: algebraic cryptography, polylinear cryptography, cryptanalysis, nilpotent group, key exchange. 
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КӨП СЫЗЫҚТЫ ФУНКЦИЯЛАРДЫ КРИПТОГРАФИЯЛЫҚ ЖҮЙЕЛЕРДІ ТАЛДАУ 

 
Бұл жұмыста Кахроби және итальяндық әріптестері А.Тортора және М.Тотамен бірге ұсынған нильпотентті 

топтардағы көп сызықты криптография сызбасының криптографиялық талдауы келтірілген. Қарапайым ақырлы 

өрістің үстіндегі униүшбұрышты матрицалар тобындағы A = Bm матрицалық теңдікте (дискретті логарифм 

мәселесін шешуге) белгісіз m дәрежесін тиімді есептеу әдісіне негізделген шабуыл осы сызбаның 

криптографиялық тұрақсыздығын көрсетеді. Бұл осалдық шабуылдаушылар белгісіз m көрсеткішін тиімді 

есептеу үшін пайдалана алатын унибұрышты матрицалардың арнайы құрылымының нәтижесі болып табылады. 

Бұл жүйеге шабуыл жасау және деректер қауіпсіздігін бұзу үлкен  мүмкіндіктерін ашады. Унибұрышты 

матрицалар криптографияда маңызды рөл атқарады,оларды пайдалану жүйенің қауіпсіздігін қамтамасыз етуге 

көмектеседі және оны Диффи-Хеллман кілттері алмасу мен цифрлық қолтаңба сияқты криптографиялық 

хаттамаларда танымал негіз ретінде қарастыруға болады. Бұл хаттамаларда жүйенің қауіпсіздігі есептелетін 

элементтердің дискретті алгоритмін табу қиын деген болжамға негізделген. Дегенмен, есептеу қуаты мен 

алгоритмдік техникадағы жетістіктер белгілі бір топтардағы унибұрышты матрицаларды пайдана 

отырып,дискретті логарифмдік есептерді шешудің тиімдірек алгоритмдерін жасауға әкелді,бұл гсы 

хаттамалардың қауіпсіздігіне қауіп төндіреді. Ұсынылған жұмыста унибұрышты матрицалардың осалдығын 

растайтын криптографиялық талдау қарастырылған. 

Түйін сөздер: алгебралық криптография, көп сызықты криптография, криптоталдау,  нилпотентті топ, кілтті 

бөлу. 
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КРИПТОГРАФИЧЕСКИЙ АНАЛИЗ СХЕМЫ ПОЛИЛИНЕЙНОЙ КРИПТОГРАФИИ 

 

В работе рассматривается группа унитреугольных матриц, уязвимая для атаки, основанная на эффективном 

методе вычисления неизвестного показателя m в матричном равенстве A = Bm (решение задачи дискретного 

логарифмирования) в группе одномерных матриц. Показано, что система полилинейной криптографии, быстро 

использующей нильпотентные группы, предложенная Кахроби совместно с итальянскими коллегами А. 

Торторой и М. Тота, оказывается уязвимой. Эта уязвимость является результатом специфической структуры 

унитреугольных матриц, которую злоумышленники могут использовать для эффективного вычисления 

неизвестного показателя степени m. Это открывает возможности для атаки на систему и компрометации 

безопасности данных. Унитреугольные матрицы играют важную роль в криптографии, их использование 

позволяет обеспечить безопасность системы  и делает его популярной основой  для криптографических 

протоколов таких как обмен ключами Диффи-Хеллмана и цифровые подписи. В этих протоколах безопасность 

системы основана на предположении, что вычислительно сложно найти дискретный алгоритм задействованных 

элементов. Однако, достижения в области вычислительной мощности и алгоритмических методов привели к 

разработке более  эффективных алгоритмов  решения задач дискретного логарифмирования с использованием 

унитреугольных матриц  в определенных группах, что представляет угрозу безопасности этих протоколов. В 

предлагаемой работе дан криптографический анализ подтверждающий уязвимость унитреугольных матриц. 

Ключевые слова: Алгебраическая криптография, полилинейная криптография, криптоанализ, 

нильпотентная группа, распределение ключа. 

 

Introduction (Literary review) 

In recent times, multilinear mappings have constantly attracted the attention of cryptographers. 

Cryptographic analysis aims to identify and address potential vulnerabilities in cryptographic systems to ensure 

their security and robustness against potential attacks. In particular, the vulnerability of polylinear 

cryptosystems to attacks based on the computation of unknown exponents in matrix equalities has been a topic 

of interest. The idea of their use in information security was proposed by Bonech and Silverberg [1].One of its 

main successful uses is the use of obfuscations for indistinguishability [2;3]. Attempts to construct schemes 

grounded on multilinear mappings were made in algebraic cryptography( see, for illustration, [4], where it was 

proposed to use a nilpotent group of nil energy position two as an encryption platform). 

This note is related to recent work American cryptographer D. Kahrobi together with Italian associates A. 

Tortora and M. Tota [5]. We dissect the protocol of multilinear cryptography proposed in this work on the 

platform of a nilpotent group, which appears in [5]  as Protocol II.  

The structure of farther sections of the composition is as follows. In Section 2, we present multilinear 

mappings and the general idea of their use in cryptography. It also provides information about nilpotent groups 

necessary for this composition. In Section 3, we describe a system for calculating the unknown degree m of 

the matrix equivalency A = Bm in the group UT (n,F), where Fp is a finite high field of characteristic p. We 

explain how this algorithm allows us to efficiently calculate analogous powers with respect to rudiments of a 

finite nilpotent group. In other words, we present an efficient result to the separate logarithm problem for the 

class of finite nilpotent groups. Section 4 is devoted to de-scribing Protocol II from [5] and demonstrating its 

vulnerability using an attack using the procedure described in section 3. 

In addition to improving the security of cryptographic systems, the analysis of polylinear cryptography 

systems also has important practical applications in areas such as secure communication, e-commerce, and 

data privacy. For example, secure communication protocols based on cryptographic primitives such as 

encryption, digital signatures, and key exchange are essential for ensuring the confidentiality and integrity of 

sensitive data transmitted over insecure channels. 

Moreover, the widespread use of the internet and mobile devices has made it easier than ever for attackers 

to intercept and manipulate data, making it even more critical to develop secure and resilient cryptographic 

systems. The analysis of polylinear cryptography systems can help identify vulnerabilities and weaknesses in 

existing cryptographic protocols, as well as provide insights into the development of more secure and efficient 

cryptographic algorithms. 

Furthermore, the field of cryptography is constantly evolving, with new mathematical techniques and 

structures being developed to address emerging security threats and challenges. As such, the study of polylinear 
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cryptography systems is an ongoing and dynamic area of research, requiring continuous innovation and 

collaboration between researchers, developers, and practitioners. 

Overall, the analysis of polylinear cryptography systems is a critical component of modern cryptography, 

and its continued development is essential for ensuring the security and privacy of sensitive data in an 

increasingly interconnected and digital world. As attackers continue to develop new and more sophisticated 

methods of attack, it is essential that cryptographers remain vigilant and continue to improve the security and 

resilience of cryptographic systems to ensure the protection of sensitive information. 

Polylinear algebra is a mathematical field that deals with multilinear maps, which are maps that take 

multiple vector inputs and output a scalar. In other words, a multilinear map is a function that is linear in each 

of its arguments. Polylinear algebra extends the concept of linear algebra to multiple inputs and outputs, which 

makes it useful in a variety of applications, including cryptography, coding theory, and physics. 

The use of multilinear maps in cryptography was first proposed by Boneh and Silverberg in their 2001 

paper "Applications of Multilinear Forms to Cryptography". Since then, researchers have been exploring the 

use of multilinear maps in cryptography and other areas. 

One of the most important applications of polylinear algebra is in the construction of efficient encryption 

and decryption schemes. By using multilinear maps, it is possible to construct more flexible and efficient 

encryption and decryption schemes than those based on traditional linear algebra. We use a polylinear system 

with a nilpontent group in cryptography. Nilpotent groups are groups in which the commutator of any two 

elements lies in a lower central series of the group. These groups play an important role in mathematics, 

including algebraic geometry, Lie theory, and group theory. 

In recent years, there has been increasing interest in the use of nilpotent groups in cryptography, particularly 

in the context of polylinear algebra. The use of nilpotent groups in cryptography is based on the fact that they 

have a specific algebraic structure that makes them useful for constructing cryptographic schemes that are 

resistant to attacks. 

One of the main advantages of using nilpotent groups with unitriangular matrices in cryptography is that 

they have a well-defined structure that allows for efficient computation of various operations. This makes them 

suitable for use in cryptographic protocols that require fast and efficient computation. 

 

Materials and Methods 

Polylinear algebra is a mathematical framework that has found significant applications in the study of 

nilpotent groups within the field of cryptography. Its origins can be traced back to the 19th-century tensor 

analysis or "tensor calculus of tensor fields." Initially, polylinear algebra was closely tied to the use of tensors 

in various mathematical disciplines, including differential geometry and general relativity, as well as numerous 

areas of applied mathematics. Throughout the 20th century, the study of tensors evolved into a more abstract 

and generalized field. A notable contribution in this regard is the treatise on multilinear algebra from the 

Bourbaki group, specifically in chapter 3 of their algebra book. This chapter, titled "tensor algebras, exterior 

algebras, symmetric algebras," has had a particularly influential impact. The essence of this approach lies in 

defining tensor spaces as mathematical constructs that serve the purpose of transforming multilinear problems 

into linear ones. This purely algebraic perspective on tensors does not necessarily emphasize geometric 

intuition but rather focuses on formalizing the mathematical relationships. 

One significant advantage of this formalization is its ability to reframe complex problems in terms of 

multilinear algebra. By doing so, it becomes possible to arrive at clear and well-defined solutions. Moreover, 

these solutions are particularly valuable in practice because they precisely align with the constraints that the 

problem imposes. This alignment between mathematical solutions and real-world constraints makes polylinear 

algebra a powerful tool in cryptography and other fields where precise problem-solving is essential. 

By using multilinear maps, it is possible to construct more efficient cryptographic protocols that are based 

on the algebraic properties of nilpotent groups. A nilpotent matrix is  a matrix that is a nilpotent element with 

respect to multiplication, that is, a matrix P for which there exists an integer n such that the condition Pn=O, 

where O is the zero matrix.If in the field of complex numbers all the eigenvalues  of a matrix are equal to zero, 

then the matrix is nilpotent .Overall, the use of nilpotent groups and polylinear algebra in cryptography 

represents an important area of research that has the potential to lead to the development of more efficient and 

secure cryptographic protocols. By leveraging the algebraic structure of nilpotent groups and the flexibility of 

multilinear maps, researchers can continue to push the boundaries of what is possible in the field of 

cryptography. 
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Let n be a natural number.  

For two copies C and D of a cyclic group of prime order p, a mapping α: C → D is called multilinear if, for 

any 𝜆1,⋯𝜆𝑛 ∈ 𝑍 and 𝑔1, … 𝑔𝑛𝜖 С, the equality  
 

                         𝛼(𝑔1
𝜆1 , . . . , 𝑔𝑛

𝜆𝑛) = 𝛼(𝑔1, . . . , 𝑔𝑛)
𝜆,                                                    (1) 

 where  𝜆 = 𝜆1 ∗ ⋯ ∗ 𝜆𝑛.  

𝛼 is non-degenerate if for any non-unit element 𝑔 𝜖 𝐶 the element is non-unit in α(𝑔, …, 𝑔) 

G is called nilpotent if there is a finite central row of normal subgroups 
 

{1} = 𝐺0 = 𝐺 < 𝐺1 < 𝐺2 <. . . < 𝐺𝑛 = 𝐺,                                        (2) 

 

where the centrality of the series means that any factor 𝑮𝒊 𝑮𝒊+𝟏⁄ belongs to the center of the factor group 

𝑮 𝑮𝒊+𝟏⁄ . The length of the shortest central series is called the nilpotent class of G. Finite p- groups are nilpotent, 

that is, groups of primary order 𝒑𝒓with respect to a prime number p. Moreover, any finite nilpotent group is a 

direct product of a finite number of finite p-groups (its slow subgroups). Any group of unitriangular matrices 

UT(n, K) over a field or an associative ring with identity K is nilpotent. See [6] or [7] for properties of nilpotent 

groups. 

For elements a, b of an arbitrary group G, denote by [a, b] their commutator 𝑎𝑏𝑎−1𝑏−1. A simple 

commutator of arbitrary weight n is defined inductively. By definition, [a, b] is a simple commutator of weight 

2. If 𝑢 = [𝑎1, 𝑎2, . . . , 𝑎𝑛]is a simple commutator of weight n, then [𝑢, 𝑎𝑛+1] −is a simple commutator of weight 

n + 1 Also, (simple) Engel commutators are defined inductively. By definition [a, b; 1] = [a, b]. We set [a, b; 

n + 1] = [[a, b; n], b]. A group G is nilpotent of class at most n if and only if any simple commutator of weight 

n + 1 of its elements is equal to 1. The least n with this property is exactly its nil potency class. This is 

equivalent to the fact that the group G satisfies the identity [x1, x2,…, xn+1] = = 1. A group G is called n-

engel if it satisfies the identity [x1, x2; n] = 1. A nilpotent group of class n is n-engel, the converse is not true 

in the general case. 

On any group G, the following commutator identities (x, y, z ϵ G) hold: 

[y, x] = [x, y]–1, [xy, z] = x[y, z]x–1[x, z], 

 

          [x, yz] = [x, y]y[x, z]y–1,                                                (3) 

 

[x, y–1] = y–1[y, x]y, [x–1, y] = x–1[y, x]x. 

If the group G is nilpotent of class n, then these identities imply that for any integers λ1,…, λn and any 

simple commutator u = [x1, x2,…, xn] of weight n from the elements of the group G, the equality.  

 

                 [ 
𝑥1
𝜆1
,
𝑥2

𝜆2  , … ,
𝑥𝑛

𝜆𝑛
] =  𝑢𝜆, 𝑤ℎ𝑒𝑟𝑒 𝜆 = λ1 ∗  … ∗ λn.                             (4) 

 

This means that the map defined by the commutator u is multilinear. It follows from (4) in particular that 

if λ = γδ and 𝑥𝑖
𝛾
= 1, then 𝑢𝜆= 1. Also here considered calculation of powers ( discrete logarithms) in the 

group of unitriangular matrices. 

     Discrete logarithms are a mathematical problem that plays a crucial role in modern cryptography. The 

discrete logarithm problem involves finding the exponent m in the equation gm = h, where g and h are elements 

of a finite cyclic group of order n, and m is an integer between 0 and n-1. 

Finding the discrete logarithm of an element in a finite cyclic group is believed to be a computationally 

difficult problem, and there is no known efficient algorithm for solving it in general. This makes it a popular 

basis for cryptographic protocols, such as Diffie-Hellman key exchange and digital signatures. 

In these protocols, the security of the system relies on the assumption that it is computationally difficult to 

find the discrete logarithm of the elements involved. However, advances in computing power and algorithmic 

techniques have led to the development of more efficient algorithms for solving discrete logarithm problems 

in certain groups, which poses a threat to the security of these protocols. 

For example, the index calculus algorithm and the number field sieve algorithm are two well-known 

methods for computing discrete logarithms in certain groups. Therefore, researchers are constantly looking for 

new mathematical structures and techniques that can be used to construct secure cryptographic protocols that 

are resistant to these attacks. 
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Thus, the study of discrete logarithms and their properties is an important area of research in modern 

cryptography, and it plays a crucial role in ensuring the security of many important cryptographic systems. We 

consider a discrete algorithm in a unitriangle matriсes. 

Unitriangular matrices are a class of matrices that have a specific structure and play an important role in 

linear algebra. A matrix is said to be unitriangular if it is upper triangular with all its diagonal entries equal to 

1. These matrices have a number of interesting properties that make them useful in a variety of applications, 

including cryptography. 

One example of a cryptographic scheme based on unitriangular matrices is the polylinear crypto raptly 

scheme proposed by Kahrobaei et al. This scheme uses nilpotent groups and multilinear maps to construct an 

encryption and decryption protocol that is resistant to attacks based on the discrete logarithm problem. 

However, recent research has shown that the use of unitriangular matrices in cryptographic schemes may 

be vulnerable to attacks based on efficient methods of computing the unknown exponent m in the matrix 

equality A = Bm. This vulnerability highlights the need for continued research in the area of cryptography, 

particularly in the development of more efficient and secure encryption and decryption protocols. 

Generally, the connection between unitriangular matrices and cryptography highlights the importance of 

linear algebra in the design and analysis of cryptographic protocols. By leveraging the mathematical properties 

of matrices, researchers can continue to develop new and more secure methods for protecting sensitive 

information in a variety of applications. 

Consider  the  group  UT(n,  Fp)  of  unitriangular  matrices  of  size  n  over  a  simple  finite field Fp 

characteristics p. We will present an efficient procedure for calculating such a matrix B from matrix A that 

A = Bm  for some natural number m > 1 provided that such a matrix B exists. The procedure can be easily 

generalized to the case of the group UT(n, Z) over the ring Z of integers. Note that this procedure represents a 

solution to the discrete logarithm problem in unitriangular matrix groups over simple finite fields or over the 

ring Z. See [8] for this problem. The case of a matrix group was considered in [9]. Here given algorithm which 

considered note that for any matrix ut(n, ) the equality C ϵ UT(n, Fp) is fulfilled. Therefore, we can assume 

that m ≤ pn–1 .  Let's represent m as follows: 

       

m = m0 + m1p + m2p2 +⋯  + mn–2pn–2,    (5) 

 

where 0 ≤ mi ≤ p – 1. 

A = Bm as a product of matrices: 

 

A =  𝐵𝑚0   ∗  𝐵𝑚1𝑝  ∗  … ∗  𝐵𝑚𝑛−2𝑝
𝑛−2
 
.                                 (6) 

 

Search for mi (i = 0, ..., n–2): 

Step 1.  In  order  to  find  m0 we  compose  a  system  of  linear  equations  (SLE)  with respect to the 

elements of the first secondary diagonal of the matrices A and Bm0: 

 

                                  {

𝑎12  =  𝑏12  ∗  
𝑚0(𝑚𝑜𝑑 𝑝),

𝑎23  =  𝑏23  ∗
𝑚0(𝑚𝑜𝑑 𝑝),

. . .
𝑎(𝑛−1)𝑛  

=  𝑏(𝑛−1)𝑛  
∗  𝑚0(𝑚𝑜𝑑 𝑝).

                                            (7) 

 

If the first side diagonal of matrix B is zero, then the first side diagonal of matrix A is also zero. A similar 

statement holds for each next diagonal. Having found the first non- zero side diagonal of the matrix B (let it 

be the diagonal with the number q), we compose an SLE similar to (7) for calculating m0: 

                                         

                    

{
 

 
𝑎1,𝑞+1  =  𝑏1,𝑞+1  ∗  

𝑚0(𝑚𝑜𝑑 𝑝),

𝑎2,𝑞+2  =  𝑏1,𝑞+2  ∗
𝑚0(𝑚𝑜𝑑 𝑝),

. . .
𝑎𝑛−𝑞,𝑛  

=  𝑏𝑛−𝑞,𝑛  
∗  𝑚0(𝑚𝑜𝑑 𝑝).

                                            (8) 

 

Solving this system, we find Bm0 (solution  in  non-zero  secondary  diagonal). Next,  we  find  the  single-

valued  value  𝑚1 from the following system.  
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                      A * 𝐵𝑚0 = 𝐵𝑚1𝑝 *…  * 𝐵𝑚𝑛−2𝑝
𝑛−2  

                                    (9) 

 

Now we note that there is a zero side diagonal q + 1 on the left side. 

 

Step 2. We raise the matrix B to rank p, thereby zeroing the side diagonal with the number q + 1, and then 

we construct a SLE of the form (8) for its next non-zero side diagonal. Further, we find the single-valued value 

m1 in the following system. 

 

                  

{
 

 
a1,q+2  =  b1,q+2  ∗  

m1(mod p),

a2,q+3  =  b1,q+3  ∗
m1(mod p),

. . .
an−q−2,n  

=  bn−q−2,n  
∗  m1(mod p).

                                     (10) 

 

Then we move Bm1 to the left side. Thus, we get the equality: 

 

A * B−m0* Bm1p= BmnP
2  

*…  *Bmn−2p
n−2

                             (11) 
 

Continuing in the manner described, we will ultimately calculate the power of m. Note that this degree is 

determined from the equation A = Bm not uniquely, but up to the order of the matrix B. At the same time, it's 

easy to see that the below algorithm finds the minimal positive result m.  

You can also notice that when working systems of type ( 7 – 9), the value of the unknown is calculated 

from one equation. It is sufficient that both coefficients sharing in the equation are not contemporaneously 

equal to 0. Still, also the coefficient from the left wing is equal to 0, If the coefficient from the right side is 

equal to 0. If the system will be unattainable, but by condition the result exists. 

Now let G be an arbitrary finite p- group. There are two ways to break the problem separate logarithm in G. 

The first of them is related to the fact that any finite the p- group G is isomorphically embeddable in the 

group UT( n, Fp) for a sufficiently large value of n. First, we put UT( n, Fp) into the group, and also we 

determine the value of the separate logarithm, as described over. 

To implement the second method, we find in G the central series whose factors Gi/Gi+1 are elementary 

abelian p-groups (2). Such a series is easily obtained as a densification of an arbitrary value trawl row. If n 

is the length of the series, then any element b ϵ G to the power pn is equal to 1. The value of m in the equation 

a = bm can be found in the form (5). In this case, the role of diagonals is played by consecutive factors Gi/Gi+1 

of the series (2). Note that for the group UT(n, Fp) the i-th member of such a series consists of matrices 

whose first i sub-diagonals are equal to zero. As a corresponding factor, an elementary abelian p-group whose 

rank is equal to the length of the corresponding diagonal is found. 

Eventually, to calculate the separate logarithm in an arbitrary finite nilpotent group G, it suffices to 

represent it in the form of a direct products of p- groups, and also find the corresponding values for the factors. 

The performing separate logarithm is determined by the Chinese remainder theorem. The Chinese Remainder 

Theorem is a fundamental statement of number theory that allows one to solve systems of linear Diophantine 

equations with two or more unknowns. Basically, this is a theorem about systems of comparisons. We used 

theory of numbers. If we clarify what it is number theory, we known that is the study of the properties of 

integers.Integers are not only the natural numbers 1,2,3, …(positive integers) but also zero and negative 

integers -1,-2,-3,…. Set designation (…,-3,-2,-1,0,1,2,3,…) integers with the letter Z. 

For unitriangular groups over Z, the separate logarithm problem is answered simply, the degree is uniquely 

calculated along the first non-zero slant. Since any finitely generated nilpotent torsion-free group G is 

embeddable in the group UT ( n, Z) for sufficiently large n, this statement is also true for G. You can also 

directly use the central series of the group G with torsion-free factors for computations ( for illustration, the 

so- called upper central row- see( 6). 

Any finitely generated nilpotent group G is embeddable in the direct product of a finitely generated torsion-

free nilpotent group and a finite nilpotent group (see ( 10)) [10]. This allows working the separate logarithm 

problem in this case as well. Either the separate logarithm is uniquely calculated from the first element, or if 

this element a = bm  if for a and b in the equation there is only one, then for the second - the last set. 
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Result  

We can Description of protocol II from [5] with its cryptographic analysis. .Protocol II is a multilinear 

cryptographic scheme proposed by D. Kahrobaei, A. Tortora, and M. Tota that uses a nilpotent group of class 

two as a platform for encryption. In this scheme, plaintexts are represented as elements of a finite field, and 

ciphertexts are represented as elements of a finite abelian group. The encryption process involves a sequence 

of multilinear maps, with each map using a different set of group elements to encrypt the plaintext. 

The security of Protocol II is based on the difficulty of computing discrete logarithms in the underlying 

nilpotent group. However, recent research has shown that the use of unitriangular matrices in the group of one-

dimensional matrices used in Protocol II makes it vulnerable to attacks based on the efficient computation of 

unknown exponents. 

In particular, the vulnerability arises from the fact that the unitriangular matrices used in Protocol II have a 

special structure that allows for efficient computations of discrete logarithms. This makes it possible for an 

attacker to recover the plaintext from the ciphertext by computing the discrete logarithm of the encryption key. 

To address this vulnerability, researchers have proposed various modifications to Protocol II, such as using 

more complex nilpotent groups or adding additional layers of encryption. However, these modifications may 

come at the cost of increased computational complexity and decreased efficiency. 

Overall, the analysis of Protocol II highlights the importance of carefully selecting the underlying 

mathematical structures and algorithms used in cryptographic schemes. It also underscores the need for 

ongoing research and development in the field of cryptography to ensure the security and resilience of 

cryptographic systems in the face of evolving security threats. As a result if  let G be an open nilpotent group 

of nilpotency class n + 1 that is not n-energetic, left (n≥ 1). Then there are elements x, b ϵ G such that [x, b; n] 

≠ 1. Suppose that n+1 users A1,…, An+1  want to share a private key among themselves. Each user Ai chooses a 

private non-zero key - a natural number λi, calculates and publishes the value 𝑏𝜆𝑖𝜖 𝐺. Then each user Ai 

calculates the element 

 

[xλi , bλ2 , . . . , bλi−1 , bλi+1 , . . . , bλn+1] = [x, b, n]λ,                                (12) 

            

where λ =  λ1  ∗  … ∗  λn+1. 
This key is common to all users. We can provide cryptographic analysis. The  efficient  procedure  described  

in  the  previous  section  allows  you  to  calculate,  for any  value  of  , 𝑏𝜆𝑖,  the  parameter  𝜇𝑖  such  that  𝑏𝜆𝑖 =
𝑏𝜇𝑖.  It  is  enough  to  calculate  one such value, say 𝜇𝑛+1, and obtain a distributed key as: 

 

  [𝑥𝜇𝑛+1 , 𝑏𝜆2 , … , 𝑏𝜆𝑖−1 , 𝑏𝜆𝑖+1 , … , 𝑏𝜆𝑛+1] = [𝑥, 𝑏, 𝑛]𝜆.                                 (13) 

 

Formally,  the  right  side  of  equality  (12)  includes  as  an exponent the product λ1… λnμn+1. However, there 

is an integer 𝜆𝑛+1 = 𝜇𝑛+1 + 𝛾𝛿, where γ is the order of the element b hence the commutator [x, b; n] to the 

power γ is equal to 1, so replacing the factor λn+1 with μn+1 in the exponent λ does not change the element (12), 

i.e., the shared key. 

 

Discussion 

In the course of our research into the Kahrobaei method, we encountered a significant oversight: an 

assumption that the unitriangular matrix system would remain impervious to security breaches. However, this 

investigation yielded a startling revelation, underscoring the need for a more comprehensive understanding of 

the method's vulnerabilities. Within the framework of this scheme, plaintexts are meticulously encoded as 

elements residing within a finite field, while ciphertexts are artfully represented as elements within a finite 

abelian group. This dual representation is pivotal to the encryption process and its subsequent analysis. Delving 

further into the encryption process, it becomes evident that it encompasses a meticulously orchestrated 

sequence of multi-line cards. Each of these cards operates autonomously, employing its unique set of group 

elements to meticulously encrypt the plaintext. The crux of the method's security hinged on the intricate nature 

of computing discrete logarithms within the fundamental nilpotent group, a complex mathematical concept 

pivotal to the encryption protocol. However, a recent breakthrough in our research has unfurled a startling 

revelation - the integration of unitriangular matrices within the group of one-dimensional matrices, a 

fundamental component of Protocol II, renders the system susceptible to attacks premised on the efficient 

computation of unknown exponents. This vulnerability has been brought to the forefront due to a fascinating 

mathematical phenomenon: the capability to manipulate the exponentiation process, enabling the arbitrary 
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selection of values that ultimately yield the result of 1. In light of these revelations, it is abundantly clear that 

the security of this system is severely compromised. Addressing this vulnerability necessitates extensive 

research and development efforts to bolster its resilience against such attacks, ensuring the continued viability 

of the Kahrobaei method in the realm of encryption and data security.The discovery of vulnerabilities in the 

Kahrobaei method highlights the importance of thorough security analysis and ongoing research and 

development in the field of encryption and data security. It appears that the integration of unitriangular matrices 

within the group of one-dimensional matrices, as a part of Protocol II, has introduced a significant weakness 

in the system’s security. Specifically, the manipulation of exponentiation processes leading to the arbitrary 

selection of values that result in 1 has the potential to compromise the confidentiality and integrity of encrypted 

data. To address these vulnerabilities and enhance the security of the Kahrobaei method, several steps should 

be taken. 

1 In-Depth Analysis: Continue the investigation into the specific mathematical properties and algorithms 

that lead to these vulnerabilities. Understanding the underlying mathematical principles is essential to 

developing effective countermeasures. 

2 Algorithm Modification: Consider modifying the encryption and decryption algorithms to mitigate the 

identified weaknesses. This may involve altering the way exponentiation is performed or introducing 

additional security measures. 

3 Peer Review: Engage the cryptography community in peer review and collaboration. External experts can 

provide valuable insights, identify potential flaws, and suggest improvements. 

4 Testing and Evaluation: Rigorously test the modified method against various types of attacks and 

scenarios to ensure that the vulnerabilities have been effectively addressed. 

5 Documentation and Education: Clearly document the revised method and provide educational materials 

to users and implementers. Proper training and understanding of the security protocols are crucial for effective 

implementation. 

6 Continuous Monitoring: Recognize that security is an ongoing process. Continuously monitor the method 

for new vulnerabilities and adapt to emerging threats. 

7 Collaboration with Industry: Collaborate with industry partners to integrate the improved method into 

practical encryption systems and applications. Real-world deployment and feedback are essential for 

validation. 

8 Legal and Ethical Considerations: Ensure that any changes made to the method comply with legal and 

ethical standards, especially if it is used in critical applications. 

It is important to acknowledge that the field og cryptography is constantly evolving, and security is a never-

ending challenge. The discovery of vulnerabilities, while concerning, provides an opportunity to strengthen 

the Kahrobaei method and make it more robust against emerging threats. By addressing these issues 

proactively and collaboratively, the method can continue to be a valuable tool in the realm of encryption and 

data security. 

 

Conclusion 

In conclusion, the vulnerability of a group of unitriangular matrices to an attack based on an efficient 

method of computing an unknown exponent m in a matrix equality poses a serious challenge to the security of 

the polylinear cryptosystem proposed by Kahrobaei et al. The solution of the discrete logarithm problem in a 

group of one-dimensional matrices is a crucial aspect of modern cryptography, and any weakness in this area 

can compromise the confidentiality and integrity of sensitive information. Therefore, it is essential to identify 

and address any vulnerabilities that exist in the cryptosystems to ensure that they remain secure against 

potential attacks. Further research is needed to develop more robust cryptographic techniques that can 

withstand these types of attacks and provide greater security for sensitive information. 

The vulnerability of the polylinear cryptosystem using nilpotent groups highlights the need for ongoing 

research and development in the field of cryptography. As attackers continue to develop new and more 

sophisticated methods of attack, it is essential that cryptographers remain vigilant and continue to improve the 

security of their systems. 

One potential avenue for addressing this vulnerability is to explore alternative cryptographic primitives that 

are resistant to the type of attack demonstrated in this research. For example, there may be other types of 

groups that are resistant to this particular type of attack, or other mathematical structures that can be used to 

secure communications. 

Another important consideration is the implementation of best practices in cryptographic engineering. 



ВЕСТНИК КазНПУ им. Абая, серия «Физико-математические науки», №3(83), 2023 г. 

122  

Cryptographic algorithms are only as secure as their implementations, and even the most robust algorithm can 

be compromised if implemented incorrectly. Therefore, it is crucial that cryptographic systems are 

implemented with the utmost care and attention to detail, and that they are subject to rigorous testing and 

verification. 
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