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Abstract

In this paper considered a group of unitriangular matrices is vulnerable to an attack based on the efficient method of
computation of an unknown exponent m in a matrix equality A = B™ (solution of the discrete logarithm problem) in a
group of one-dimensional matrices. We show that the system of the polylinear crypto raptly using nilpotent groups
proposed by Kahrobaei together with Italian associates A. Tortora and M. Tota proves vulnerable. This vulnerability is
a result of the specific structure of unitriangular matrices, which can be exploited by attackers to efficiently compute the
unknown exponent m. This opens up opportunities for attacking the system and compromising data security. Unitriangular
matrices play an important role in cryptography, their use helps ensure system security and makes it a popular basis for
cryptographic protocols such as Diffie-Hellman key exchange and digital signatures. In these protocols, system security
is based on the assumption that it is computationally difficult to find a discrete algorithm of the elements involved.
However, advacnes in computing power and algorithmic techniques have led to the development of more efficient
algorithms for solving discrete logarithm problems using unitriangular matrices in certain groups, which poses a security
threat to these protocols. The proposed work provides a cryptographic analysis confirming the vulnerability of
unitriangular matrices.
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KOII ChI3bIKTHI ®YHKIUAJIAPJIBI KPUIITOI PAOUSIIBIK ) KYUEJEPII TAJJIAY

By sxymeicta KaxpoOu sxoHe UTanmbsHIBIK opinTectepi A. Topropa xone M.ToTtamen 6ipre yChIHFAaH HIITBIOTSHTTI
TONTAP/AFbI KOTI CHI3BIKTHI KPUITOTpa sl ChI30achIHBIH KpUNTOTpadHsIIbIK Talgaysl KenTipiared. KapamnaiibiM akpIpiist
OpICTIH YCTIHIETI YHHYIIOYPHIIITH MaTpuiamap ToObHAarel A = B™ MaTpumanelk TeHIIKTE (IUCKpPETTi Jorapupm
MOCEJNIeCiH mmiemyre) Oenricia m JopeKeciH THIMAI ecenTey oMiCiHe Heri3geireH maldybul OChl  ChI30aHBIH
KpHUITOrpadusuIbIK TYPaKChI3IBIFBIH KepceTeni. byl ocanaplk Hmradysuigaylnsiiap Oenricia m KepceTKIlIiH THIMII
€cemnTey YIIiH Maiaiana anaTelH YHUOYPHIIITE MaTpUIaIapAblH apHaWbl KYPBUIBIMBIHBIH HOTIDKECT OOJIBIN TaOBIIaab.
Byn xyliere malysun jkacay JXKoHE IEpeKTep Kayilnci3miriH Oy3y YIKeH MYMKIHAIKTEepiH amajnbl. YHUOYPBIIITHI
MaTpuIagap Kpunrorpadusga MaHbI3AB pejl aTKapaasl,0JdapAbl Maiaiany KXYHeHIH Kayilci3diriH KaMTaMachl3 eTyre
KeMekTeceni skoHe OHbl [luddu-Xemnman kintrepi anMacy MeH HUQPIBIK KOATaHOA CHSAKTHI KPHNTOTrpadusIIbIK
XaTTamallapia TaHbIMaJl HeTi3 peTiHAe KapacTelpyra Oomansl. By xarramanapna xyieHiH Kayinci3airi ecenreneTiH
JIEMEHTTEP/IIH JUCKPETTI aJrOpUTMIH Taldy KWBIH JlereH Ooipkamra HerizjenreH. JlereHMeH, ecenrey KyaTbhl MeH
ANTOPUTMIIK TEXHUKAJAFbl JKeTIiCTIKTep Oenrimi Oip TomTapaarbl YHMOYpBINITH MaTpUIAIapiAsl NaiaaHa
OTBIPBIILAUCKPETTI  JIOTapUPMAIK ecenTepAl MENnIyAiH THIMIIpEK aJrOpUTMAEPIH JKacayra oOKesIi,0yi1 rcbl
XaTTamajapJblH Kayilci3airine Kayim TeHJIpedi. ¥ ChIHBUIFAH JKYMBICTa YHHOYPBIIITH MaTPUIAIAPIBIH OCAJIBIFBIH
pacTaiThlH KpUNTOrpadusIIbIK Tanay KapacThIpbUIFaH.

Tyiiin ce3aep: anredbpainbiK Kpuntorpadus, KO CHI3BIKTH KpUIITOrpadus, KpUNTOTaNAay, HUIMOTEHTTI TOM, KiITTI
Oemy.
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B pabote paccMmaTpuBaeTcs rpyIina YHUTPEYTONbHBIX MAaTPHI, ySI3BUMast ATl aTaKd, OCHOBaHHAsA Ha 3(Q()EeKTHBHOM
METO/Ie BBIYHCIICHHS HEM3BECTHOT'O ITOKA3aTelNii M B MaTpUYHOM paBeHcTBe A = B™ (pemienue 3amaum TUCKPETHOTO
sorapuMHUPOBAHNUS) B TPYIIIIE OTHOMEPHBIX MaTpuIl. Iloka3aHo, 9TO cHCTeMa MOMMINHEHHOHN Kpunrorpaduu, ObICTpo
UCTIONB3YIOIMIEH HUIBIIOTCHTHBIE TPYNIbI, NpeiokeHHass KaxpoOW COBMECTHO C HTalNbsSHCKUMH KOJUIETaMH A.
Toptopoit u M. ToTa, oka3piBaeTCs yA3BUMOH. DTa YSI3BHUMOCTH SBIIACTCS PE3YIbTATOM CHEIH(PUISCKONH CTPYKTYpPHI
YHUTPEYTOJIbHBIX MAaTpHIl, KOTOPYIO 3JIOYMBIIUICHHUKHA MOTYT MCHOJB30BaTh IS S(PQPEKTUBHOTO BBIYHCICHHS
HEHM3BECTHOTO TOKa3aTeis CTENEHM m. DTO OTKPBIBAET BO3MOXKHOCTH JUIsS aTakd Ha CHUCTEMY M KOMIIPOMETALlUH
0€30MacHOCTH JIaHHBIX. YHHTPEYTrOJIbHBIE MaTpPHUIBl WTPAIOT BaKHYIO pOJb B KpHUNTOrpaduu, UX HCIIOIb30BaHHE
Mo3BoJIsieT 00ecreunTh 0e30MacHOCTh CUCTEMBl M JIeJlaeT €ro MHOMYJSPHOW OCHOBOW IJIsl KpUNTOrpapuYecKux
MIPOTOKOJIOB TaKuX Kak oOMeH mouamu Juddu-Xemnmmana u nudpossle noanucu. B aTux npoTokonax 6e30macHOCTh
CHUCTEMbI OCHOBAaHa Ha MPEAITOJIO0KCHUN, YTO BHIYUCIUTCIIBHO CJIO0XKHO HalTH I[I/ICerTHI:Jﬁ AJITOPUTM SaﬂeﬁCTBOBaHHLIX
aseMeHTOB. OJHAKO, TOCTMXEHHUS B OOJIACTH BBIYMCIUTEIHHOW MOIIHOCTH M AJITOPHTMHYECKHX METOMOB IPHBEIH K
pa3pabotke 6onee 3(p(HEeKTHBHBIX ANTOPUTMOB PEIICHUS 33734 AUCKPETHOTO JIOTApH(PMUPOBAHUS C UCTIOIb30BAHIEM
YHHUTPEYTOJIBHBIX MAaTpHI] B ONPENEICHHBIX IPYIIax, YTO MPEICTaBIAET YIpo3y O€30MacHOCTH ATHUX NPOTOKOJIOB. B
npeanaraeMoi paborte qaH KpunrorpadudecKuii aHaIu3 MOTBEPKAAIOIINH ySI3BIMOCTh YHUTPEYTOIBHBIX MaTPHIL.

KnaroueBble ciaoBa: AsreOpamdeckass Kpunrtorpadus, MNOJIWIMHEWHass KpunTorpadus, KpHUNTOAHAIIN3,
HUJIBIIOTEHTHAS TPYIINa, paclpeelcHUe KIroYa.

Introduction (Literary review)

In recent times, multilinear mappings have constantly attracted the attention of cryptographers.
Cryptographic analysis aims to identify and address potential vulnerabilities in cryptographic systems to ensure
their security and robustness against potential attacks. In particular, the wvulnerability of polylinear
cryptosystems to attacks based on the computation of unknown exponents in matrix equalities has been a topic
of interest. The idea of their use in information security was proposed by Bonech and Silverberg [1].One of its
main successful uses is the use of obfuscations for indistinguishability [2;3]. Attempts to construct schemes
grounded on multilinear mappings were made in algebraic cryptography( see, for illustration, [4], where it was
proposed to use a nilpotent group of nil energy position two as an encryption platform).

This note is related to recent work American cryptographer D. Kahrobi together with Italian associates A.
Tortora and M. Tota [5]. We dissect the protocol of multilinear cryptography proposed in this work on the
platform of a nilpotent group, which appears in [5] as Protocol Il.

The structure of farther sections of the composition is as follows. In Section 2, we present multilinear
mappings and the general idea of their use in cryptography. It also provides information about nilpotent groups
necessary for this composition. In Section 3, we describe a system for calculating the unknown degree m of
the matrix equivalency A = B™ in the group UT (n,F), where F; is a finite high field of characteristic p. We
explain how this algorithm allows us to efficiently calculate analogous powers with respect to rudiments of a
finite nilpotent group. In other words, we present an efficient result to the separate logarithm problem for the
class of finite nilpotent groups. Section 4 is devoted to de-scribing Protocol Il from [5] and demonstrating its
vulnerability using an attack using the procedure described in section 3.

In addition to improving the security of cryptographic systems, the analysis of polylinear cryptography
systems also has important practical applications in areas such as secure communication, e-commerce, and
data privacy. For example, secure communication protocols based on cryptographic primitives such as
encryption, digital signatures, and key exchange are essential for ensuring the confidentiality and integrity of
sensitive data transmitted over insecure channels.

Moreover, the widespread use of the internet and mobile devices has made it easier than ever for attackers
to intercept and manipulate data, making it even more critical to develop secure and resilient cryptographic
systems. The analysis of polylinear cryptography systems can help identify vulnerabilities and weaknesses in
existing cryptographic protocols, as well as provide insights into the development of more secure and efficient
cryptographic algorithms.

Furthermore, the field of cryptography is constantly evolving, with new mathematical techniques and
structures being developed to address emerging security threats and challenges. As such, the study of polylinear
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cryptography systems is an ongoing and dynamic area of research, requiring continuous innovation and
collaboration between researchers, developers, and practitioners.

Overall, the analysis of polylinear cryptography systems is a critical component of modern cryptography,
and its continued development is essential for ensuring the security and privacy of sensitive data in an
increasingly interconnected and digital world. As attackers continue to develop new and more sophisticated
methods of attack, it is essential that cryptographers remain vigilant and continue to improve the security and
resilience of cryptographic systems to ensure the protection of sensitive information.

Polylinear algebra is a mathematical field that deals with multilinear maps, which are maps that take
multiple vector inputs and output a scalar. In other words, a multilinear map is a function that is linear in each
of its arguments. Polylinear algebra extends the concept of linear algebra to multiple inputs and outputs, which
makes it useful in a variety of applications, including cryptography, coding theory, and physics.

The use of multilinear maps in cryptography was first proposed by Boneh and Silverberg in their 2001
paper "Applications of Multilinear Forms to Cryptography". Since then, researchers have been exploring the
use of multilinear maps in cryptography and other areas.

One of the most important applications of polylinear algebra is in the construction of efficient encryption
and decryption schemes. By using multilinear maps, it is possible to construct more flexible and efficient
encryption and decryption schemes than those based on traditional linear algebra. We use a polylinear system
with a nilpontent group in cryptography. Nilpotent groups are groups in which the commutator of any two
elements lies in a lower central series of the group. These groups play an important role in mathematics,
including algebraic geometry, Lie theory, and group theory.

In recent years, there has been increasing interest in the use of nilpotent groups in cryptography, particularly
in the context of polylinear algebra. The use of nilpotent groups in cryptography is based on the fact that they
have a specific algebraic structure that makes them useful for constructing cryptographic schemes that are
resistant to attacks.

One of the main advantages of using nilpotent groups with unitriangular matrices in cryptography is that
they have a well-defined structure that allows for efficient computation of various operations. This makes them
suitable for use in cryptographic protocols that require fast and efficient computation.

Materials and Methods

Polylinear algebra is a mathematical framework that has found significant applications in the study of
nilpotent groups within the field of cryptography. Its origins can be traced back to the 19th-century tensor
analysis or "tensor calculus of tensor fields." Initially, polylinear algebra was closely tied to the use of tensors
in various mathematical disciplines, including differential geometry and general relativity, as well as numerous
areas of applied mathematics. Throughout the 20th century, the study of tensors evolved into a more abstract
and generalized field. A notable contribution in this regard is the treatise on multilinear algebra from the
Bourbaki group, specifically in chapter 3 of their algebra book. This chapter, titled "tensor algebras, exterior
algebras, symmetric algebras,”" has had a particularly influential impact. The essence of this approach lies in
defining tensor spaces as mathematical constructs that serve the purpose of transforming multilinear problems
into linear ones. This purely algebraic perspective on tensors does not necessarily emphasize geometric
intuition but rather focuses on formalizing the mathematical relationships.

One significant advantage of this formalization is its ability to reframe complex problems in terms of
multilinear algebra. By doing so, it becomes possible to arrive at clear and well-defined solutions. Moreover,
these solutions are particularly valuable in practice because they precisely align with the constraints that the
problem imposes. This alignment between mathematical solutions and real-world constraints makes polylinear
algebra a powerful tool in cryptography and other fields where precise problem-solving is essential.

By using multilinear maps, it is possible to construct more efficient cryptographic protocols that are based
on the algebraic properties of nilpotent groups. A nilpotent matrix is a matrix that is a nilpotent element with
respect to multiplication, that is, a matrix P for which there exists an integer n such that the condition P"=0,
where O is the zero matrix.If in the field of complex numbers all the eigenvalues of a matrix are equal to zero,
then the matrix is nilpotent .Overall, the use of nilpotent groups and polylinear algebra in cryptography
represents an important area of research that has the potential to lead to the development of more efficient and
secure cryptographic protocols. By leveraging the algebraic structure of nilpotent groups and the flexibility of
multilinear maps, researchers can continue to push the boundaries of what is possible in the field of

cryptography.
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Let n be a natural number.
For two copies C and D of a cyclic group of prime order p, a mapping a: C — D is called multilinear if, for
any A, .4, € Z and g,, ... g€ C, the equality

a(git, ... g") = algy, .- gn)™, )
where 3 = 2, « - x 1.
a is non-degenerate if for any non-unit element g € C the element is non-unitin a(g, ..., g)
G is called nilpotent if there is a finite central row of normal subgroups

{1}=6,=6<G,<G,<...< G, =G, (2

where the centrality of the series means that any factor G;/G;,belongs to the center of the factor group
G/G;. 4. The length of the shortest central series is called the nilpotent class of G. Finite p-groups are nilpotent,
that is, groups of primary order p"with respect to a primenumber p. Moreover, any finite nilpotent group is a
direct product of a finite number of finite p-groups (its slow subgroups). Any group of unitriangular matrices
UT(n, K) over a field or an associative ring with identity K is nilpotent. See [6] or [7] for properties of nilpotent
groups.

For elements a, b of an arbitrary group G, denote by [a, b] their commutator aba='h~t. A simple
commutator of arbitrary weight n is defined inductively. By definition, [a, b] is a simple commutator of weight
2. Ifu = [ayq,a,,...,a,lisasimple commutator of weightn, then [u, a,,, 1] —is a simple commutator of weight
n + 1 Also, (simple) Engel commutators are defined inductively. By definition [a, b; 1] = [a, b]. We set [a, b;
n+1] =[[a, b; n], b]. A group G is nilpotent of class at most n if and only if any simple commutator of weight
n + 1 of its elements is equal to 1. The least n with this property is exactly its nil potency class. This is
equivalent to the fact that the group G satisfies the identity [xi, Xo,..., xn+1] == 1. A group G is called n-
engel if it satisfies the identity [x1, X2; n] = 1. A nilpotent group of class n is n-engel, the converse is not true
in the general case.

On any group G, the following commutator identities (x, y, z € G) hold:

Iy, X1 =[x, yI'%, [xy, z] = x[y, zIx '[x, z],
[x, yz] = [x, YIy[x, zly %, 3)

X, y'T =y 'y, xly, [x*", y] = xy, x]x.
If the group G is nilpotent of class n, then these identities imply that for any integers As,..., Ar and any
simple commutator u = [X1, Xo,..., Xn] Of weight n from the elements ofthe group G, the equality.

Moy A In
[x1 1’x2 2,---,xn | = ut, where A =k * ... % (4)

This means that the map defined by the commutator u is multilinear. It follows from (4) in particular that
if 1 =y0and xl?’ = 1, then u?= 1. Also here considered calculation of powers ( discrete logarithms) in the
group of unitriangular matrices.

Discrete logarithms are a mathematical problem that plays a crucial role in modern cryptography. The
discrete logarithm problem involves finding the exponent m in the equation g™ = h, where g and h are elements
of a finite cyclic group of order n, and m is an integer between 0 and n-1.

Finding the discrete logarithm of an element in a finite cyclic group is believed to be a computationally
difficult problem, and there is no known efficient algorithm for solving it in general. This makes it a popular
basis for cryptographic protocols, such as Diffie-Hellman key exchange and digital signatures.

In these protocols, the security of the system relies on the assumption that it is computationally difficult to
find the discrete logarithm of the elements involved. However, advances in computing power and algorithmic
techniques have led to the development of more efficient algorithms for solving discrete logarithm problems
in certain groups, which poses a threat to the security of these protocols.

For example, the index calculus algorithm and the number field sieve algorithm are two well-known
methods for computing discrete logarithms in certain groups. Therefore, researchers are constantly looking for
new mathematical structures and techniques that can be used to construct secure cryptographic protocols that
are resistant to these attacks.
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Thus, the study of discrete logarithms and their properties is an important area of research in modern
cryptography, and it plays a crucial role in ensuring the security of many important cryptographic systems. We
consider a discrete algorithm in a unitriangle matrices.

Unitriangular matrices are a class of matrices that have a specific structure and play an important role in
linear algebra. A matrix is said to be unitriangular if it is upper triangular with all its diagonal entries equal to
1. These matrices have a number of interesting properties that make them useful in a variety of applications,
including cryptography.

One example of a cryptographic scheme based on unitriangular matrices is the polylinear crypto raptly
scheme proposed by Kahrobaei et al. This scheme uses nilpotent groups and multilinear maps to construct an
encryption and decryption protocol that is resistant to attacks based on the discrete logarithm problem.

However, recent research has shown that the use of unitriangular matrices in cryptographic schemes may
be vulnerable to attacks based on efficient methods of computing the unknown exponent m in the matrix
equality A = B™. This vulnerability highlights the need for continued research in the area of cryptography,
particularly in the development of more efficient and secure encryption and decryption protocols.

Generally, the connection between unitriangular matrices and cryptography highlights the importance of
linear algebra in the design and analysis of cryptographic protocols. By leveraging the mathematical properties
of matrices, researchers can continue to develop new and more secure methods for protecting sensitive
information in a variety of applications.

Consider the group UT(n, Fp) of unitriangular matrices of size n over a simple finite field F,
characteristics p. We will present an efficient procedure for calculating such a matrix B from matrix A that
A = B™ for some natural number m > 1 provided that such a matrix B exists. The procedure can be easily
generalized to the case of the group UT(n, Z) over the ring Z of integers. Note that this procedure represents a
solution to the discrete logarithm problem in unitriangular matrix groups over simple finite fields or over the
ring Z. See [8] for this problem. The case of a matrix group was considered in [9]. Here given algorithm which
considered note that for any matrix ut(n, ) the equality C € UT(n, Fp) is fulfilled. Therefore, we can assume
that m <p™*. Let's represent m as follows:

M= Mo + Mip + Mop? +--- + My 2p" 2, ()

where 0 <m;<p-1.
A = B™ as a product of matrices:
A = BMo x BMP 4 _ x BMn-2P" (6)
Search form; (i=0, ..., n-2):
Step 1. In order to find mowe compose a system of linear equations (SLE) with respect to the
elements of the first secondary diagonal of the matrices A and B™o:

a, = by, * Molmodp),

ay3 = by + Mo(mod p),

0
A(n-1)n - b(n—l)n * Mo (mOd P)-

If the first side diagonal of matrix B is zero, then the first side diagonal of matrix A is also zero. A similar
statement holds for each next diagonal. Having found the first non- zero side diagonal of the matrix B (let it
be the diagonal with the number q), we compose an SLE similar to (7) for calculating mo:

(Q1qe1 = biger * mo(mod p),
= mo(mod )

e = e © o ©
kan_q’n = bp-gn * mg(mod p).

Solving this system, we find B™0 (solution in non-zero secondary diagonal). Next, we find the single-
valued value m; from the following system.
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n-—2
(9)

A* B™o = BMiP *  * BMn-2P
Now we note that there is a zero side diagonal g + 1 on the left side.
Step 2. We raise the matrix B to rank p, thereby zeroing the side diagonal with the number q + 1, and then

we construct a SLE of the form (8) for its next non-zero side diagonal. Further, we find the single-valued value
m1 in the following system.

aiqi2 = bigiz * m; (mod p),
{ az2q+3 = D143 + M1 (mod p), (10)
kan—q—z,n - bn—q—Z,n * ml(mOd p)'
Then we move B™! to the left side. Thus, we get the equality:
A * B~Mox BMiP= BMnP” & *Bmn—p" (11)

Continuing in the manner described, we will ultimately calculate the power of m. Note that this degree is
determined from the equation A = B™ not uniquely, but up to the order of the matrix B. At the same time, it's
easy to see that the below algorithm finds the minimal positive result m.

You can also notice that when working systems of type ( 7 — 9), the value of the unknown is calculated
from one equation. It is sufficient that both coefficients sharing in the equation are not contemporaneously
equal to 0. Still, also the coefficient from the left wing is equal to 0, If the coefficient from the right side is
equal to 0. If the system will be unattainable, but by condition the result exists.

Now let G be an arbitrary finite p- group. There are two ways to break the problem separate logarithm in G.

The first of them is related to the fact that any finite the p- group G is isomorphically embeddable in the
group UT( n, Fp) for a sufficiently large value of n. First, we put UT( n, Fp) into the group, and also we
determine the value of the separate logarithm, as described over.

To implement the second method, we find in G the central series whose factors Gi/Gi.1 are elementary
abelian p-groups (2). Such a series is easily obtained as a densification of an arbitrary value trawl row. If n
is the length of the series, then any element b € G to the power p" is equal to 1. The value of m in the equation
a =b™ can be found in the form (5). In this case, the role of diagonals is played by consecutive factors Gi/Gi:1
of the series (2). Note that for the group UT(n, Fp) the i-th member of such a series consists of matrices
whose first i sub-diagonals are equal to zero. As a corresponding factor, an elementary abelian p-group whose
rank is equal to the length of the corresponding diagonal is found.

Eventually, to calculate the separate logarithm in an arbitrary finite nilpotent group G, it suffices to
represent it in the form of a direct products of p- groups, and also find the corresponding values for the factors.
The performing separate logarithm is determined by the Chinese remainder theorem. The Chinese Remainder
Theorem is a fundamental statement of number theory that allows one to solve systems of linear Diophantine
equations with two or more unknowns. Basically, this is a theorem about systems of comparisons. We used
theory of numbers. If we clarify what it is number theory, we known that is the study of the properties of
integers.Integers are not only the natural numbers 1,2,3, ...(positive integers) but also zero and negative
integers -1,-2,-3,.... Set designation (...,-3,-2,-1,0,1,2,3,...) integers with the letter Z.

For unitriangular groups over Z, the separate logarithm problem is answered simply, the degree is uniquely
calculated along the first non-zero slant. Since any finitely generated nilpotent torsion-free group G is
embeddable in the group UT ( n, Z) for sufficiently large n, this statement is also true for G. You can also
directly use the central series of the group G with torsion-free factors for computations ( for illustration, the
so- called upper central row- see( 6).

Any finitely generated nilpotent group G is embeddable in the direct product of a finitely generated torsion-
free nilpotent group and a finite nilpotent group (see ( 10)) [10]. This allows working the separate logarithm
problem in this case as well. Either the separate logarithm is uniquely calculated from the first element, or if
this element a = b™ if for a and b in the equation there is only one, then for the second - the last set.
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Result

We can Description of protocol Il from [5] with its cryptographic analysis.Protocol Il is a multilinear
cryptographic scheme proposed by D. Kahrobaei, A. Tortora, and M. Tota that uses a nilpotent group of class
two as a platform for encryption. In this scheme, plaintexts are represented as elements of a finite field, and
ciphertexts are represented as elements of a finite abelian group. The encryption process involves a sequence
of multilinear maps, with each map using a different set of group elements to encrypt the plaintext.

The security of Protocol Il is based on the difficulty of computing discrete logarithms in the underlying
nilpotent group. However, recent research has shown that the use of unitriangular matrices in the group of one-
dimensional matrices used in Protocol 1l makes it vulnerable to attacks based on the efficient computation of
unknown exponents.

In particular, the vulnerability arises from the fact that the unitriangular matrices used in Protocol Il have a
special structure that allows for efficient computations of discrete logarithms. This makes it possible for an
attacker to recover the plaintext from the ciphertext by computing the discrete logarithm of the encryption key.

To address this vulnerability, researchers have proposed various modifications to Protocol 11, such as using
more complex nilpotent groups or adding additional layers of encryption. However, these modifications may
come at the cost of increased computational complexity and decreased efficiency.

Overall, the analysis of Protocol Il highlights the importance of carefully selecting the underlying
mathematical structures and algorithms used in cryptographic schemes. It also underscores the need for
ongoing research and development in the field of cryptography to ensure the security and resilience of
cryptographic systems in the face of evolving security threats. As a result if let G be an open nilpotent group
of nilpotency class n + 1 that is not n-energetic, left (n> 1). Then there are elements x, b € G such that [x, b; n]
# 1. Suppose that n+1 usersAy,..., An+1 Want to share a private key among themselves. Each user Ai chooses a
private non-zero key - a natural number A;, calculates and publishes the value b*e G. Then each user A;
calculates the element

[x%,b22,..., bri-1, b+, bra+1] = [x,b,n]%, (12)

where A = A; * ... * Apyq.

This key is common to all users. We can provide cryptographic analysis. The efficient procedure described
in the previous section allows you to calculate, for any value of , b%, the parameter yu; such that b =
b#i. 1t is enough to calculate one such value, say u, .1, and obtain a distributed key as:

[xkne1, b2, .., bAi=1, bhisa, . bAnn] = [x, b, n] . (13)

Formally, the right side of equality (12) includes as an exponent the product Az... Anpn+1. However, there
is an integer A,,41 = Uny1 + Y5, Where vy is the order of the element b hence the commutator [x, b; n] to the
power vy isequal to 1, so replacing the factor A+ with pq1 in the exponent A does not changethe element (12),
i.e., the shared key.

Discussion

In the course of our research into the Kahrobaei method, we encountered a significant oversight: an
assumption that the unitriangular matrix system would remain impervious to security breaches. However, this
investigation yielded a startling revelation, underscoring the need for a more comprehensive understanding of
the method's vulnerabilities. Within the framework of this scheme, plaintexts are meticulously encoded as
elements residing within a finite field, while ciphertexts are artfully represented as elements within a finite
abelian group. This dual representation is pivotal to the encryption process and its subsequent analysis. Delving
further into the encryption process, it becomes evident that it encompasses a meticulously orchestrated
sequence of multi-line cards. Each of these cards operates autonomously, employing its unique set of group
elements to meticulously encrypt the plaintext. The crux of the method's security hinged on the intricate nature
of computing discrete logarithms within the fundamental nilpotent group, a complex mathematical concept
pivotal to the encryption protocol. However, a recent breakthrough in our research has unfurled a startling
revelation - the integration of unitriangular matrices within the group of one-dimensional matrices, a
fundamental component of Protocol Il, renders the system susceptible to attacks premised on the efficient
computation of unknown exponents. This vulnerability has been brought to the forefront due to a fascinating
mathematical phenomenon: the capability to manipulate the exponentiation process, enabling the arbitrary
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selection of values that ultimately yield the result of 1. In light of these revelations, it is abundantly clear that
the security of this system is severely compromised. Addressing this vulnerability necessitates extensive
research and development efforts to bolster its resilience against such attacks, ensuring the continued viability
of the Kahrobaei method in the realm of encryption and data security. The discovery of vulnerabilities in the
Kahrobaei method highlights the importance of thorough security analysis and ongoing research and
development in the field of encryption and data security. It appears that the integration of unitriangular matrices
within the group of one-dimensional matrices, as a part of Protocol I, has introduced a significant weakness
in the system’s security. Specifically, the manipulation of exponentiation processes leading to the arbitrary
selection of values that result in 1 has the potential to compromise the confidentiality and integrity of encrypted
data. To address these vulnerabilities and enhance the security of the Kahrobaei method, several steps should
be taken.

1 In-Depth Analysis: Continue the investigation into the specific mathematical properties and algorithms
that lead to these vulnerabilities. Understanding the underlying mathematical principles is essential to
developing effective countermeasures.

2 Algorithm Modification: Consider modifying the encryption and decryption algorithms to mitigate the
identified weaknesses. This may involve altering the way exponentiation is performed or introducing
additional security measures.

3 Peer Review: Engage the cryptography community in peer review and collaboration. External experts can
provide valuable insights, identify potential flaws, and suggest improvements.

4 Testing and Evaluation: Rigorously test the modified method against various types of attacks and
scenarios to ensure that the vulnerabilities have been effectively addressed.

5 Documentation and Education: Clearly document the revised method and provide educational materials
to users and implementers. Proper training and understanding of the security protocols are crucial for effective
implementation.

6 Continuous Monitoring: Recognize that security is an ongoing process. Continuously monitor the method
for new vulnerabilities and adapt to emerging threats.

7 Collaboration with Industry: Collaborate with industry partners to integrate the improved method into
practical encryption systems and applications. Real-world deployment and feedback are essential for
validation.

8 Legal and Ethical Considerations: Ensure that any changes made to the method comply with legal and
ethical standards, especially if it is used in critical applications.

It is important to acknowledge that the field og cryptography is constantly evolving, and security is a never-
ending challenge. The discovery of vulnerabilities, while concerning, provides an opportunity to strengthen
the Kahrobaei method and make it more robust against emerging threats. By addressing these issues
proactively and collaboratively, the method can continue to be a valuable tool in the realm of encryption and
data security.

Conclusion

In conclusion, the vulnerability of a group of unitriangular matrices to an attack based on an efficient
method of computing an unknown exponent m in a matrix equality poses a serious challenge to the security of
the polylinear cryptosystem proposed by Kahrobaei et al. The solution of the discrete logarithm problem in a
group of one-dimensional matrices is a crucial aspect of modern cryptography, and any weakness in this area
can compromise the confidentiality and integrity of sensitive information. Therefore, it is essential to identify
and address any vulnerabilities that exist in the cryptosystems to ensure that they remain secure against
potential attacks. Further research is needed to develop more robust cryptographic techniques that can
withstand these types of attacks and provide greater security for sensitive information.

The vulnerability of the polylinear cryptosystem using nilpotent groups highlights the need for ongoing
research and development in the field of cryptography. As attackers continue to develop new and more
sophisticated methods of attack, it is essential that cryptographers remain vigilant and continue to improve the
security of their systems.

One potential avenue for addressing this vulnerability is to explore alternative cryptographic primitives that
are resistant to the type of attack demonstrated in this research. For example, there may be other types of
groups that are resistant to this particular type of attack, or other mathematical structures that can be used to
secure communications.

Another important consideration is the implementation of best practices in cryptographic engineering.
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Cryptographic algorithms are only as secure as their implementations, and even the most robust algorithm can
be compromised if implemented incorrectly. Therefore, it is crucial that cryptographic systems are
implemented with the utmost care and attention to detail, and that they are subject to rigorous testing and
verification.
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