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Abstract

The study of the laws of fluid motion has always been an important aspect of the development of both technical and
natural sciences. The solution to various problems arising in the analysis of fluid dynamics can be carried out both at the
theoretical level and through carefully designed physical experiments. However, in many cases, creating models to study
fluid phenomena is challenging, especially in laboratory or field studies. Physical experiments aimed at the detailed study
of fluid motion often encounter technical difficulties and require significant resources and financial costs. In addition, the
data obtained from such experiments are often limited in their applicability. This is why mathematical modeling plays a
significant role in research in fluid dynamics. This makes it possible to more efficiently and cheaply study various aspects
of fluid motion, and also provides the opportunity to apply the results obtained more widely. Modeling allows you to
consider various factors affecting fluid movement and analyze their impact on the final result. Thus, mathematical
modeling becomes an important tool for understanding and improving fluid movement concepts in various science and
technology fields. This article discusses the fictitious domain method for a linear ocean flow problem. A generalized
solution to the problem is given and its uniqueness is proved. The theorem of existence and convergence of solutions to
approximate models obtained using the fictitious domain method are studied.

Keywords: fictitious domain method, hydrodynamics, oceanology, viscous fluid, irregular domain, stationary
problems, finite difference method.
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OKEAHOJIOTHSI MYJITIJIIK MOCEJIEHI INEITY YIIIH XKAJTFAH AMMAKTAP SIICIH KOJIJAHY

CyHBIKTBIK KO3FaJIbICHIHBIH 3aH/IBUIBIKTAPIH 3€PTTEY dpKallaH TEXHUKAIBIK JKOHE JKapaTbUIBICTaHy FBUIBIMIAPHIHBIH
JTaMyBIHBIH MaHBI3/1bI actiekTici 0omapl. CYHBIKTHIK JUHAMHUKACBHIH TajayAa TyBIHIAWTBIH 9pTYPIIi Macelenepai menry
TEOPUSUTBIK JICHTeH/Ie JIe, MYKHMAT KYPacThIPbUIFaH (pU3HMKaJbIK TIXKipHOenep apKblIbl Ja Xy3ere achbpbulybl MYMKiH.
JlereHMeH, KeNTEreH jKaraaiiapia CYHBIKTHIK KyOBUIBICTApBIH 3€pTTEy YIIIH MOJAEJbIEp jKacay KHUbIH, ocipece
3epTXaHalbIK HeMmece manaiblK 3eprreyiepae. CYHBIKTBIK KO3FaBICHIH eTrKel-TerKein 3epTreyre OarbITTalFaH
(bU3UKAJIBIK JKCIEPUMEHTTEP KHMi TEXHUKAIBIK KHUBIHJBIKTAPFA Tam OoJiajbl JKOHE aWTapibIKTail pecypcTap MeH
KapKbUIBIK HIBIFBIHAAP/BI Tanan ereni. COHpIMEH KaTap, MyHJail dKCIIEpUMEHTTEpIeH aJlbIHFaH JepeKkTep KebiHece
OJIap/bIH KOJAAHBUIYbIHJA IIeKTeydi. MiHe, COHABIKTaH MaTeMAaTHKaJbIK MOJEIbJeY CYHBIKTHIK JHHAMHMKACHI
CaNacBIHAAFBI 3epTTEYIepAe MaHbI3AbI PO aTKapaasl. Bysl CyHBIKTHIK KO3FAIBICBIHBIH OPTYPIIi aCHEKTIIEPiH THIMIIPEK
JKOHE ap3aHBIpaK 3epTTeyre MyMKIHIIK Oepesli, COHBIMEH KaTap aJIbIHFaH HOTHIKEJIEpl KeHIHEeH KOJIaHyFa MYMKIHIIK
6epeni. Mozenbey CYHBIKTHIKTBIH KO3FAJIBICHIHA 9Cep €TETIH OpTYPIIi (haKTopIIapAbl ECEIKe allyFa XKOHE OJIap/IblH COHFbI
HOTIDKETe aCcepiH Taijayra MYMKIHIAIK Oepeni. Ocburaiinia, MaTeMaTHKAJIBIK MOJAENBICY FBUIBIM MEH TEXHHKAHbBIH
OPTYPIIi cajajapbHAaFbl CYHBIKTBIK KO3FAJIBICHI Typajbl TYCIHIKTEpJl TYCIHY MEH JKeTUIAIPYAiH MaHbI3/IbI KypasblHa
aiiHamanpl. Byn Makamaga MyXWT arbIHBIHBIH CBI3BIKTBIK MOcCENeCi YIIIH >KajFaH aiMakTap oici TaJKbUIaHAIbI.
MoceneHiH JKaNbUIaHFaH MISIIiMI KeATIpLIiI, OHBIH Oipereiiri nonenaeHeni. JKanran TOMEH 9JIici apKbUIbI abIHFAH
KYBIKTAJIFaH MOJIETbIepre MeniMaepaiH 6ap O00Tysl XKoHE )KHHAKTBUIBIFBI TEOPEMAChI 3ePTTENE .
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CTAIMOHAPIIBIK €CENTEeP, MIEKTi alfbIPMAIIIBUTBIKTAD JJIICI.
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NPUMEHEHUE METOJA ®UKTUBHbBIX OBJIACTEMN
JJIs1 PEIHEHUA MOI[EJII)HOfl 3AJJAYA OKEAHOJIOT'NHA

W3ydenne 3aKOHOB IBIDKEHUS JKAIKOCTEH Bcerma OBLIO Ba)KHBIM ACIEKTOM B Pa3BUTHH KaK TEXHUUECKUX, TaK U
€CTECTBCHHBIX HayK. PellleHHe pa3sHOOOpa3HBIX 3aj7ay, BOSHHKAMONIUX MPH aHATU3C TUHAMUKHU KHIKOCTCH, MOMKET
OCYILECTBIIATHCS KaK HA TCOPETUYCCKOM YPOBHE, TaK M IyTeM IMPOBEACHUS TIIATEIHLHO pa3pabOTaHHBIX (PU3MYCCKHIX
JKCIEPUMEHTOB. TeM HE MEHee, BO MHOIMX CIIy4asX CO3/JaHH€ MOJENEeW i1 U3Y4YCHUS SIBICHUM, CBSI3aHHBIX C
JBIOKCHUEM JKHJIKOCTEH, MPEICTABIIACT COOOM CIOXKHYIO 3aJady, OCOOCHHO IMpH MPOBEACHUHM JAaO0OPATOPHBIX HIIU
MOJICBBIX UCCIieoBaHul. DU3nUecKne 3KCIICPUMEHTHI, HATIPABJICHHBIC HA MOAPOOHOE M3YUYCHUE JBMIKCHUS KHUIKOCTH,
YacTO CTAJIKUBAIOTCS ¢ TEXHUYCCKUMH CJIOXKHOCTSIMHU, TPEOYIOT 3HAYUTEIBHBIX PECYPCOB M (PUHAHCOBBIX 3aTpar. Kpome
TOTO, JIJaHHbIE, MOJNYUYEHHbIE B PE3yJbTAaTe€ TAKUX OINBITOB, 3a4acTYI0 OTpaHMYEHBl B CBOEH MpUMEHUMOCTU. VIMEHHO
MMO3TOMY MaTEeMaTHIeCKOe MOACTHPOBAHNE UTPACT CYIIECTBEHHYIO POJIb B UCCIICIOBAHUAX B OOJIACTH THAPOIHMHAMIKH.
Oto mo3BonseT Oojee APPEKTUBHO M JIEIMICBO HCCIEOBATH Pa3IMYHBIC ACIEKTHI IBIDKCHUS JKUAKOCTH, a TaKKe
MIPEJOCTABIIET BO3MOXKHOCTH OoOJiee IMUPOKO TPHMEHSTH IIONyYSHHBIC Pe3yiabTaThl. MOIECTHpPOBAHUE IT03BOIIICT
YYUTBHIBaTh pa3HOOOpa3HbIe (PaKTOPHI, BIMSIONINE Ha JBIDKCHUCE KUIKOCTH, i aHATN3UPOBATh UX BIHSHNAC Ha KOHCUHBII
pe3ynbTar. Takum 00pazoM, MaTeMaTHIeCKOe MOJCITUPOBAHIE CTAHOBUTCS BaXKHBIM HHCTPYMEHTOM JUIS TIOHUMAHHS H
VIIYYIIEHUS] TOHSITHA O JBIDKEHUH >XUAKOCTEH B Ppa3IMUHBIX OOJACTAX HAYKM W TEXHMKH. B maHHON cTaThe
paccMaTtpuBaeTcs MeTo]l GUKTUBHBIX 00JIACTEH I TUHCHHOW 3a/1aun TeUeHUs okeaHa. J[aeTcst 0000IIeHHOe pelieHNE
3a7laud U JOKa3bIBAETCS €ro €AUHCTBEHHOCTh. lccienoBaHbl Teopema CyIIECTBOBAHUS M CXOJUMOCTH PELICHUS
MPUOJIMKCHHBIX MOJICIICH, MOJIYUYCHHBIX C MOMOIIBI0 METOa (GUKTUBHBIX 00IaCTei.

KiaroueBble ciioBa: MeTol GUKTUBHBIX 00JacTel, THAPOIMHAMUKA, OKCAHOJIOTHS, BA3KAs JKUAKOCTh, HEPETYJIsIpHAst
00J1aCTh, CTAI[MOHAPHBIC 3a1a4YH, METO/I KOHCYHBIX Pa3HOCTEH.

Introduction

The study of processes occurring in the atmosphere and ocean is an important aspect of geophysics. When
studying these phenomena, mathematical models based on systems of partial differential equations, mainly of
the Navier-Stokes type, are actively used. Of particular interest are hydrodynamic models describing
atmospheric processes, and important contributions to this area have been made by I.A. Kibel and his
students [1].

Solving stationary problems of mathematical physics is an important part of computational mathematics.
Some of them can be considered as limiting cases of non-stationary problems. When using asymptotic
stationary methods, no attention is paid to the intermediate values of the solution, since they do not matter.
Analytical methods leading to explicit solutions are rarely applicable, and approximate methods are most often
used. This requires studying the correctness of boundary value problems for differential equations and their
approximation, which includes the classical theory of differential equations and functional analysis [2].

Work by G.V. Demidov and G.l. Marchuk [3] was one of the first to study the correctness of mathematical
models in meteorology and oceanology. Later this direction was developed in the works of Yu.Ya. Belov [4],
B.A. Bubnov, A.V. Kazhikov, A.A. Kordzadze, V.I. Sukhonosov, Sh. Smagulov [5] and others.

In the work of V.P. Kochergin [7] studied a model of ocean dynamics in which the quasilinear terms ‘;—’:

and % were absent in the first two equations of motion, and the seawater density diffusion equation was

considered in full form.

One of the difficulties in numerically solving problems of mathematical physics is the arbitrariness of the
domain boundary. To overcome this problem, the fictitious region method was proposed by V.K. Saulev. This
idea was then developed in the works of V.Ya. Rivkinda, A.N. Konovalov, Sh. Smagulov and others.

Another feature of numerical methods for hydrodynamics problems is the non-evolutionary nature of the
Navier-Stokes system of equations, which makes it difficult to use the effective method of fractional steps. In
this regard, the idea of approximating the Navier-Stokes equations by equations of evolutionary type was put
forward in the work of N.N. Vladimirov, B.G. Kuznetsov, N.N. Yanenko.
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R. Temam proposed another method of e-approximation, during which the behavior of the solution as e—0
was studied and a difference scheme was developed that converged to the solution of the boundary value
problem for the Navier-Stokes equations under certain conditions.

In the work of V.Ya. Rivkind presents various economic difference schemes such as fractional steps without

introducing aditional terms %ﬁgdivﬁs into the equations of motion and using a formal modification of

nonlinear terms.

In the work of Yu.Ya. Belov proved a theorem on the existence of a generalized solution of the linearized
Navier-Stokes system with a small parameter and obtained estimates for the rate of convergence as e—0.

In the listed studies, mainly weak generalized solutions were considered (most often from the class
W31(Q)), but the work of P.E. Sobolevsky and V.V. Vasilyev presents for the first time a detailed study of a
system with a small parameter, including the behavior of strong solutions.

Thus, one of the key directions in the development of mathematical modeling methods is associated with
the study of approximate methods for solving complex multidimensional problems of mathematical physics.
To effectively solve many applied problems associated with unstructured domains, the fictitious domain
method is widely used, which is characterized by a high degree of automation in programming. The main
concept of the fictitious domain method is to solve the problem not in the most complex initial domain D, but
in a simpler domain D, where D, c D. In this paper, we present a stationary problem of studying the fictitious
domain method for a linear equation in oceanology.

Formulation of the problem
The linear problem describing ocean currents is reduced to solving the following equations in the region
Qy = (0,H) Dy, QcR?%

62u+ A P _ 1
Moazz Hau ax_fl' €Y
S PR 2
nu'O azz I"t v ay - le - axz ayzl ( )
6u+6v+6w_0 op 3
ox "9y Taz " 8z Pog ®
with boundary conditions
ou_W_ e 0, with z=0 D 4
az_az_w_ , WL z =1, (x,}’)e 0 ()
S with z=H D 5
(JJ—aZ—aZ— , Wi zZ =M, (x,}’)e 0 ( )
u=v =20 afloat [0,H] - dD,, (6)

where u,v is the velocity, o is the vorticity in a limited simply connected region D, with the boundary dD,,.
We integrate the second equation (3) with respect to z:

Z
p=p(x,0)—pg f gdz.

0
Denoting é(x, y) = p(x,y, 0) and integrating the first equation (3) z € [0, H] using conditions (4), (5), we
write equations (1) — (6) in equivalent form:

62u+ A a";—F 7
Hog 3 tHbu— =2 =F, 7
d0%v aé
— 4 uAv——==F 8
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H

with boundary conditions

ou _ov _ . _
5—62—0, with z=0
8u_8v_0 h _y
g—&— , WL Z =

u=v =20 in [0,H]-0D,,

were
Z VA

0 0
F1:f1+a fpoé}dz' F2:f2+@ fpogvdz-

0

f(6u+8v)d =0 f dxdy =0, L = ¢
ox T ay)42 =0 | Sdxdy =0, 7=
0 Dy

0

)

(10)

We will solve problem (7) — (10) using the fictitious domain method. Then we add the original area D, to

some D,, which can be, for example, a rectangle or a circle.

We introduce the notation: Q, = (0,H)-D,, Q, =(0,H)-D;, D; = %.
0
In the domain £2, , we consider the auxiliary problem
in 0,
d%us e 08
o,z T plAu" ———-=F,
azv£+ Av® afg—F
nu'O aZZ I"t v ay - 2
inQ,:
%uf 1 e 08
Ho g okt — 5, =Fy
0%ve 1 €
R T e _ 2
Hogz T guAv 3y Fy,

H

f AL PR f fdxdy =0, 2o
ax "oy )TV $rdxdy =0, &
0

D,
with boundary conditions
oué  ove

¥=E=O with z=H
c’)vs_au”'_o th 7 =0
oz 9z wih z2 =75,

uf=v¥=0 in [0,H]"-0D,.

(11)

(12)

(13)

At the boundary dD, of the initial region we assume that the following matching conditions are satisfied:

1 [ou® — ou® N
{;u [E cos(n,x) + oy cos(n, y)_

_{ [aug @ )+6u£ @ )'
=3u Ix cos(n, x 3y cos n,y_

— &€cos(n, x)}
— &€cos(n, x)}

1 [ove - ave —~ 4]
{;y [E cos(n,x) + By cos(n, y)_

— &€cos(n, x)}

aDg

apg

aDg

(14)

(15)
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)

ang

= (]2 costi ) + 2 cos ()| ~ £#costi )]
=3u T cos(n, x 3y cos(n,y &fcos(n, x)

[u*]lap, = 0. (16)

where u® = (uf, v¢),, the signs “+”, “-” mean that the limiting values of the function on the curve 0D, are
taken from inside and outside the region D, respectively. In vector form, conditions (14), (15) can be written

as follows:
1 8u£ en B ous -
ou 0Jv

C%(Qy) =4 (wv € C?(), W Vlap,) =0, z€[0,H], Friat R 0,

oDy ang

We introduce the notation

H
6u 617
0,] dz=0 ;;
zZ=H

0

Ju
0z

z=H aZ

V,(Q,), V4 (Q,) — closure of €2(Q,) in the norm of the spaces L, (Q,), W¥(Q,), £ = —2;-1;0; 1.

Definition 1. A generalized solution to problem (11) — (16) is a function u® = (uf,v®) € V;(Q,) satisfying
the following integral identity:

dz

H H
augafp U N
+,uVu5V<p dxdy+jd f Ho oo + - VuSV(p dxdyzfdz f F - @dxdy (17)
0

0 o Dy

a0 0
were V= (6 ay) P € VL(Qy), F= (F, F,).

Lemma 1. Let F(x, y,z) € W5 1(Qp). Then there is a unique generalized solution to problem (11) — (17)
and for it the estimate holds:

ous
0z

Proof of Lemma 1. We provide an estimate (18). To do this, multiply equations (11), (12) by u¢ and

integrate by parts
ov .
( >dxdydz = f Fuédx.

D, Qo

2

+ IVl g + = ||\7uf||L2ml> clIFl,,
L,(93)

(18)

5 1 (Q0)

o ||*

0z

Ho

H
—e112 1 —E2
+ uollVUellL, oy +;#||Vu L, +
L,(Q3) 0

From here, using the Holder and Young inequality, we obtain (18). The existence of a solution is proved
by the Galerkin method. Uniqueness follows from (18).

Definition 2. A strong solution to problem (11) — (17) is the function u® € V}(Q,) N W2(Q,),
§€ € W2(Q,),i = 0,1, satisfying (11) — (17) almost everywhere.

Theorem 1. Let 9Q,,3Q, € C2, F(x,y,z) € L,(Q). Then the weak solution to problem (11) — (17) is
strong and the estimate holds

d°%ut
0z

~ 1 .
1Nz + I oo + oy S Il =12 (9
L,(Q4)
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Proof of Theorem 1. We get (19).
Then we introduce the notation

H H
i =fu5dz, e = f védz, & = HE,
0 0
H H
ou® ove
T1 = f Fle + Ho aZ Z=0, TZ = f deZ + Ho aZ Z=0.
0 0

Integrating (11), (12) over z € [0, H] we obtain

in D,
~e 085 _
UAT ox Ty,
e 0¢°
pAD® — By T3,
in D;

1 ADE a sfs_
o1us av‘g_o
ox  dy

In addition, the functions ii¢, #¢ satisfy the boundary conditions

@¥lap, = P%lap, =0, ©¥lap, = P¥lap, = O,

T | I 17T
[“arz_f "] ‘[Eaﬁ_f "]

ap¢ aDy
Using known estimates of problem (20) — (22), we obtain
= 1,5 . " .
2Nz oy + 2 18 0, * 1 g oy + 18 Nz0y = €T 0,

Then from equations (11), (12) we have the force
0%u®

0z2

Ho

L(Q2)

This inequality (23) guarantees estimate (19). The theorem has been proven.

— ,Ll — -
+ AT, ) + 18T Ny < € (IF]], gy + 178y c0))

(20)

(21)

(22)

(23)

Remark 1. Estimate (18) allows us to go to the limit as e—0 in integral identity (17). From (18) it follows

that from the sequence {2} we can select a subsequence that weakly converges in V3 (Q,).

Denotes its limit through #°. Passing to the limit in (17), it turns out that %° corresponds to %, i.e. It is a
generalized solution to problems (7) — (10). From estimate (19) it follows that the strong solution of problem

(11) — (17) as e—0 approaches the strong solution of problem (7) — (10).

Then we estimate the rate of convergence of the solution to problem (11) — (17) as e—0. Let u®t, u®2 be

solutions to problems corresponding to parameters &,, €,. Takes the place of the next Theorem 2.

Theorem 2. Let the conditions of Lemma 1 be satisfied. Then the solution to problem (11) — (17) satisfies

the estimate
s = %213 ) < Caer + £2),

(24)

in which the constant C; depends on F(x, y,z) and does not depend on e. Let us introduce the notation

u1 — U%2 = w. By virtue of (11) — (17), the function @ satisfies the relations:
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uof f dxdy +,uf dzf V& - Vgdxdy +—f dzf ViéiVgdxdy +
Do Dy

H
+gﬁ f dz f ViiE2V@dxdy = 0, (25)
Dy

B 0w, 0w, .
J;) (E'Fw)dZ:O, (4)=((4)1,(1)2).

Let ¢ = w in (25).

112 H
Uo |l— + ullVa||? @) T f dz f Vw <£Vﬁgl +ﬁVﬁ’£2)dxdy = 0.
OZ 23750 81 82
Ly(Q3) 0

Then we estimate the third term using Holder’s inequality and taking into account estimate (18)

fdz f (_vusl +—Uu£2) Vwdxdy| < [—”Vll'gl”L (Qq) +—||Vu£2||1, « )] ' ||Vw||L Q9) =
&1 & &1 2 ) 2 2¥1
0

< ClIFllws1cay) * IV8IlL, @) < Caler + £2)

Theorem 2 is proven.
Consider the following version of the fictitious area method

in Qg
0%u¢ 7
o7 + uAut —VEE=F (26)
inQ,
1 62—’8
<MO 072 +MAu >_ er = 0' (27)

with boundary conditions (13) — (16).

We define a generalized solution to this problem using the integral identity

o Jy dz f, 2222 dxdy + [, dz f, VicVgdxdy + (28)
_>£ a¢ = =
f f dxdy + — f dzf Vit2Vgpdxdy = f dzf (F,@)dxdy,

for all §(x,y,z) € V}(Q,) similar to Definition 1.
Theorem 3. Let F(x,y,z) € W5 1(Q,). Then there is a unique generalized solution to problem (26), (27),
(13) — (16) and the following estimates are valid:

— 1 - =
1%l gy + 5 188wz o,y < ClIF ] g, (29)

18 = tllyzq,) < Cse (30)
Let ¢ equal to 1¢ in identity (28). We get:

Holl AN + 10T ) < f dz f Frittdxdy < |Fll oo 0 18 s

From here, using Young’s mequallty, it is easy to obtam (29). Estimate (30) is derived according to the
scheme given for Theorem 2. The proof of Theorem 2 is complete.
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Conclusion

The need and scientific significance of studying dynamic stability, predicting possible operating modes and
their consequences are dictated by the need to improve environmental monitoring and the state of biological
resources, predict the circulation of water masses and its variability in the medium term, and control the spread
of pollution in the ocean. This approach is successfully used in oceanology, underwater acoustics and
atmospheric physics and allows us to understand the nature of a number of hydrodynamic and acoustic
phenomena, build models and obtain results that cannot be reproduced by other methods.

Thus, in the course of our research, the fictitious domain method for ocean dynamics models was considered
and mathematically justified, in particular, the model problem was studied:

257¢€

Ho o+ pAT® —VE2=F,  inQ

1 0%ue e . .
Z Mom"‘l«ﬂu —-VéE =0, in Oy
oo age
j divuédz = 0, Edxdy =0, — =0
0 D 0z
2
with boundary conditions
ou® ou®

0, with z = H, 0, with z =0, u¢ = 0 with (x,y,z) € [0,H]- 0D,

9z oz
At the boundary aD, of the source domain, the following matching conditions are assumed to be satisfied:
[ﬁs]laDo = OI zZ € [OI H]r

ous .. pous .
- _fFE. |- _ fE.
i W = e

ap¢ aDy

the signs “+” and “~" mean that the limiting values of the function on the curve dD,, are taken from inside
and outside the region D, respectively.

A theorem for the existence of a weak solution to the presented problem was also proven and that, under

certain conditions on dD,, dD, and Fitis strong and the following convergence estimate is established:

it — U2 |l g,y < C(&r + &)

Cnucok ucnonb3068aHHbIX UCTIOUHUKOG:

1 Kubenv U.A. Beedenue 6 cuopoounamuueckue Memoovl KpamkOCPOUHO20 NPOSHO3a No2oovbl. M.: H30. mexwn. meop.
aumepamypot, 1957. — 375c¢.

2 Babuwesuu I1. H. Memoo ¢huxmuenvix obracmei 8 3adavax mamemamuuecko usuxu. M.: 2-uzoanue. H30.
Jlenano, 2017. — 160c.

3 Mapuyx I'"A. Hucrennvie pewenus 3a0auu ounamuxu ammocgeput u oxeana. JI.: I'uopomemeouzoam, 1974. — 303c.

4 benos FO.A. O6 00101l K8A3UNUHEUHOU CIAYUOHAPHOU 3a0ade OUHAMuKy oxeand. // uciennvie Memoobl Mexanuxu
cnaownou cpedvl. —1977. — T.8. — Ned. — C.20-23

5 Cmaeynos I.C. Memoo ¢uxmuenvix obaacmeti 015 Kpaegou 3a0auu ypasnenuti Hasve-Cmokca. — Hosocubupck:
H30.Bl] CO AH CCCP. IIpenpunm. — No68. — 1979. — 22c¢.

6 Bacunves B.B., Cobonesckuii ILE. O6 odnoui € —annpoxcumayuu ypasuenuti Hasve-Cmoxca. // Hucn. memoowi
mexan. cnaownou cpeowi. —1970. — T.1. — Ne6. — C.13-17

7 Hcaes C.A. Hccnedosanue 1eo0HopoOHO HCUOKOCMU Memooom pecyaspusayuu // Bonpocel kauecmsennoii meopuu
oug. ypasuenui. — Anma-Ama: U30.Kazl[IH um.A6as. — 1986. — C.77-81

8 Ucaese C.A., Cmaeynos Ill. & —annpokcumayusi ypagnenuii HeoOHOPOOHOU dcuokocmu // Mamem. modenup.
HecmayuoHapuvlx npoyeccos. — Aama-Ama: H30. Muneysa KazCCP. — 1988. — C.3-7

41




BECTHHUK KaszHIIY um. Abas, cepus « Quzuxo-mamemamuyeckue naykuy, Ne3(83), 2023 2.

9 P. Sun and C. Wang, Distributed Lagrange multiplier/fictitious domain finite element method for Stokes/parabolic
interface problems with jump coefficients. Journal of Applied Numerical Mathematics, vol. 152, no. 4, pp. 199-220, 2020.

10 P. Sun, “Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients,”
Journal of Computational and Applied Mathematics, vol. 356, no. 3, pp. 81-97, 2019.

11 Daniele Boffi, Fabio Credali, Lucia Gastaldi. On the interface matrix for fluid—structure interaction problems with
fictitious domain approach. Journal of Computer Methods in Applied Mechanics and Engineering, vol.401, Part B, 1
November 2022, 115650, https://doi.org/10.1016/j.cma.2022.115650

12 Mikihiro Tajima, Takayuki Yamada. Topology optimization with geometric constraints for additive manufacturing
based on coupled fictitious physical model. Journal of Computer Methods in Applied Mechanics and Engineering,
Volume 417, Part A, 1 December 2023, 116415, https://doi.org/10.1016/j.cma.2023.116415

13 Ziyang Huang, Guang Lin, Arezoo M. Ardekani. A consistent and conservative Phase-Field method for multiphase
incompressible flows. Journal of Computational and Applied Mathematics, Volume 408, July 2022, 114116.
https://doi.org/10.1016/j.cam.2022.114116

References:

1Kibel I.A. (1957) Vvedenie v gidrodinamicheskie metody kratkosrochnogo prognoza pogody. [Introduction to
Hydrodynamic Methods for Short-Term Weather Forecasting]. Tekhniko-teoreticheskaya literatura [Technical and
Theoretical Literature], 375 (In Russian)

2 Vabishevich P.N. (2017) Metod fiktivnyh oblastej v zadachah matematicheskoj fiziki. [Method of Fictitious Domains
for the Problem of Mathematical Physics], 2-izdanie. Lenand, 160 (In Russian)

3 Marchuk G.I. (1974) Chislennye resheniya zadachi dinamiki atmosfery i okeana. [Numerical solutions to the
problem of atmospheric and ocean dynamics]. Gidrometeoizdat, 303 (In Russian)

4 Belov Yu.Ya. (1977) Ob odnoj kvazilinejnoj stacionarnoj zadache dinamiki okeana. [On a quasilinear stationary
problem of ocean dynamics]. Chislennye metody mekhaniki sploshnoj sredy. [Journal of Numerical methods of continuum
mechanics], T. 8, Ae 4, 20-23. (In Russian)

5 Smagulov Sh.S. (1979) Metod fiktivnyh oblastej dlya kraevoj zadachi uravnenij Navye-Stoksa. [Fictitious domain
method for the boundary value problem of the Navier-Stokes equations]. Novosibirsk: VC SO AN SSSR. Preprint.
[Computing Center of the USSR Academy of Sciences. Preprint], M 68, 22. (In Russian)

6 Vasilyev V.V., Sobolevsky P.E. (1970) Ob odnoj e-approksimacii uravnenij Navye-Stoksa. [On one e-approximation
of the Navier-Stokes equations.], Chisl. Metody mekhan. Sploshnoj sredy. [Journal of Number mechanical methods
continuum]. T.1, Ae 6, 13-17. (In Russian)

7 Issayev S.A. (1986) Issledovanie neodnorodnoj zhidkosti metodom regulyarizacii [Study of an inhomogeneous fluid
by the regularization method]. Voprosy kachestvennoj teorii diff.uravnenij. [Journal of Questions of qualitative theory of
differential equations]. Abai KazPl, 77-81. (In Russian)

8 Issayev S.A., Smagulov Sh.(1988) ¢-approksimaciya uravnenij neodnorodnoj zhidkosti [e-approximation of the
equations of an inhomogeneous fluid]. Matem. modelir. nestacionarnyh processov. [Journal of Matem. modeler non-
stationary processes]. Minvuza KazSSR. [Ministry of Higher Education of the Kazakh SSR], 3-7. (In Russian)

9 P. Sun and C. Wang, Distributed Lagrange multiplier/fictitious domain finite element method for Stokes/parabolic
interface problems with jump coefficients. Journal of Applied Numerical Mathematics, vol. 152, no. 4, pp. 199-220, 2020.

10 P. Sun, “Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients,”
Journal of Computational and Applied Mathematics, vol. 356, no. 3, pp. 81-97, 2019.

11 Daniele Boffi, Fabio Credali, Lucia Gastaldi. On the interface matrix for fluid—structure interaction problems with
fictitious domain approach. Journal of Computer Methods in Applied Mechanics and Engineering, vol.401, Part B, 1
November 2022, 115650, https://doi.org/10.1016/j.cma.2022.115650

12 Mikihiro Tajima, Takayuki Yamada. Topology optimization with geometric constraints for additive manufacturing
based on coupled fictitious physical model. Journal of Computer Methods in Applied Mechanics and Engineering,
Volume 417, Part A, 1 December 2023, 116415, https://doi.org/10.1016/j.cma.2023.116415

13 Ziyang Huang, Guang Lin, Arezoo M. Ardekani. A consistent and conservative Phase-Field method for multiphase
incompressible flows. Journal of Computational and Applied Mathematics, Volume 408, July 2022, 114116.
https://doi.org/10.1016/j.cam.2022.114116

42



https://doi.org/10.1016/j.cma.2022.115650
https://doi.org/10.1016/j.cma.2023.116415
https://doi.org/10.1016/j.cam.2022.114116
https://doi.org/10.1016/j.cma.2022.115650
https://doi.org/10.1016/j.cma.2023.116415
https://doi.org/10.1016/j.cam.2022.114116

