Abaii amvinoaser Kaz¥I1Y-uiy XABAPIIBICHI, « Dusuxa-mamemamura evlaimoapsly cepuscol, Nel(85), 2024

®U3UKAJIBIK IPOLIECTEP MEH MEXAHMKAJIBIK KYHAEJIEPI MOJAE/IbAEY
MO/EJIMPOBAHUE ®WU3UYECKHX MTPOL[ECCOB M MEXAHUYECKUX CUCTEM
MODELING OF PHYSICAL PROCESSES AND MECHANICAL SYSTEMS

MPHTH 29.05.41; 41.17.41
10.51889/2959-5894.2024.85.1.006

N.A. Beissen?, A. Muratkhan'", T. Kapar?, K. Amanbayeva?, T. Yernazarov?
1Al-Farabi Kazakh National University, Almaty, Kazakhstan
2K azakh National Women’s Teacher Training University, Almaty, Kazakhstan
“e-mail: arail2@mail.ru

THE INTERNAL STRUCTURE AND GENERAL RELATIVISTIC CALCULATIONS OF
COMPACT OBJECTS

Abstract

In this study, we examine dense compact objects, such as white dwarfs and neutron stars, through the lens
of Einstein's theory of gravity. Our focus is on understanding these objects when they are not perfectly
spherical, using a mathematical description for their gravitational fields. We consider the quadrupole moment
as an additional parameter that explicitly enters the equilibrium equations and the geometry of spacetime. In
fact, most studies of equilibrium conditions in relativistic astrophysics are limited to the case of spherically
symmetric sources. We construct approximate interior and exterior line elements, considering the quadrupole
moment up to the first order, to describe static deformed compact objects. We pay particular attention to the
interiors of slightly deformed compact objects, applying a specific formula known as the equation of state
(EoS). This critical component enables us to understand how these stars balance the force of their own gravity
with internal pressure. The EoS is pivotal in determining how matter behaves under the extreme conditions of
density and pressure found within these compact objects.
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Annomayus

B uccnenoBaHum MBI paccMaTpuBaeM IUIOTHBIE KOMITAKTHBIE OOBEKTHI, TaKhe Kak Oejble KapIuKH U
HEUTPOHHBIE 3BE31bI, Yepe3 MPU3MY TCOPHH TpaBUTAIIMN DWHINTeHHA. Hamra mems — MOHSITh 3TH 0OBEKTHI,
KOTJla OHM HE SBIAIOTCS WACANbHO CPEpUYECKUMH, HCIONB3ysl MaTeMaTHYeCKOe OINHCaHUe WX
FPABUTAIIMOHHBIX TOJieH. MBI y4yuThIBaeM KBaAPYHOJIbHBII MOMEHT KaK JOMOJHUTENbHBIN MapameTp,
KOTOpBIA SIBHO BXOJWUT B YpPAaBHEHHS PABHOBECHS U T€OMETPHUIO NPOCTpaHCTBa-BpeMEeHH. (DaKTHYECKH,
OOJIBIIIMHCTBO HCCIIC/IOBAHUN YCIOBUI DPaBHOBECHS B PEISITUBHCTCKOW acTpoH3MKe OrpaHHYMBACTCS
ciryyaeM c(epuyeckd CUMMETPUYHBIX HCTOYHUKOB. MBI CTPOMM NMPUOIU3UTEIbHBIE BHYTPEHHIE U BHEILTHHE
3JIEMEHTHI JIMHUH, YYUTBIBas KBaJAPYIHOJIbHBIA MOMEHT 0 MEPBOrO MOPsIKa, YTOObI OMHCATh CTATHYECKU
nedopMUpOBaHHBIE KOMITAKTHbIE OOBEKTHl. MBI ynmensieM oco00€ BHHMaHHE BHYTPEHHOCTSIM CJIeTKa
ne(OpPMUPOBAHHBIX KOMIIAKTHBIX 00BHEKTOB, IPUMEHSIS OTIPE/ICTICHHYIO ()OPMYITy, U3BECTHYIO KaK ypaBHEHUE
coctosiHus (EoS). DTOT KpuTHYECKHiT KOMIIOHEHT MO3BOJISIET HAM MOHATH, KaK 3TH 3B€3/[bl YPABHOBEILIUBAIOT
CIIIy COOCTBEHHOH TpaBHTAallMd C BHYTPEHHMM JaBieHHeM. EoS wumeer pemaroliee 3Hau€HUE IS
ONpEeIEeCHUs] TOBEICHUS MaTEpUM B OKCTPEMANBHBIX YCIOBHMSX IUIOTHOCTM U JABJICHUS, KOTOPBIE
BCTPEYAIOTCS B 3THX KOMIAKTHBIX OOBEKTAaX.
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Kniouesnle cnosa. TpaBUTALMOHHOC IIOJIC, YPABHCHUSA COCTOSIHNA, KOMIIAKTHBIC O6’BCKTI>I, KBa):[pyrIOJ'IBHLIfI
MOMCHT.
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Anoamna

Byn skympicta, DWHINTEHHHIH TpaBUTALUS TEOPUSCHl HETi3IHIAE aK epreeusi jKoHE HEUTPOHIIBIK
JKYJIIBI3AAp CHSKTHI THIFBI3 KUHAKBI HBICAHIAPAB! KapacThIpaMbl3. bi3MiH MaKcaThIMBI3 - OVJ1 OOBEKTIICpIiH
TPAaBUTALMSUIBIK  OPICTEPiHIH MaTeMaTHKaJbIK CHIATTaMachlH TMaijanaHa OTBHIPBHIN, oJap Ccgepanbik
CUMMETPUSUIBI OOJIMaFaH JKarmaija onapiblH (U3UKACHIH TYCiHY. Temne-TeHmiK TeHICyJepi MEH KEHICTiK-
YaKbIT T€OMETPHSICHIHA HAKTHI €HT131IreH KOCHIMIIIA TapaMeTp PETiHAe KBaAPYIIONbIiK MOMEHTTI €CKepPeMis.
[I61H MoHIHAE, PENSITUBHUCTIK acTPO(PU3NKATAFHI TETIS-TSHIIK KaFJaiIapblH 3ePTTEY IiH KOMIITIr cepanbik
CUMMETPHSUTBI Ko3/1epMeH miekTenei. CTaTHKaIBIK AedopMalysIaHFaH bIKIIAM HbICAaHJapAbl CUIIaTTay YIIiH
OipiHIIi peTKe AEHiHri KBaApYIOIbAiK MOMEHTTI €CKEepPE OTBIPHIN, JKYBIKTAIFAaH iMIKi KOHE CBIPTKBI CHI3BIK
JJMeMeHTTepiH mnaiinamanamerd. Kyi tenameyinepi ymria (KT) aphHaitel ¢dopmyiaHpl KONIaHy apKbUIBI
MapbIMCBI3 IeopMalusIaHFaH bIKIIAM HbICAaHJAPAbIH 1K KYpBUIBIMBIHA Ha3ap aynapambl3. by MaHbI3ab1
KOMITOHEHT JKVJIZIBI3JIAPJbIH  ©3/CPIHIH TPaBUTAIMSUIBIK TAPTBUIBIC KYIIIH IIMIKi KBICBIMMEH Kayan
TeHecTipeTiHiH TyciHyre MyMmkiamik Oepemi. KT ocbl bIKmiamM HpICaHmapna Ke3AECeTiH THIFBI3ABIK IIeH
KBICBIMHBIH TOTCHIIE KaFAalIapblHIaFbl MATCPHUSIHBIH OPEKETIH aHBIKTAY YIIIiH 6T¢ MaHBI3]IHI.

Tyuiin co30ep: TpaBUTALMSUIBIK OpIC, Ky TEHIEYepi, bIKIaM 00beKTiep, KBaApYyMOJIbIiK MOMEHT.

Introduction

Studying the universe's dense objects, such as white dwarfs and neutron stars, is fundamental in
the exploration of space using Einstein's general theory of relativity. These dense objects range from
planets to black holes and are characterized by their significant mass relative to their size.
Understanding these objects is crucial for unraveling the mysteries of the cosmos.

In the framework of general relativity, accurately describing the gravitational field in any scenario
involving gravity is vital. The metric tensor, which solves Einstein's equations, contains all details of
the gravitational field. For compact objects like stars or planets, this entails analyzing both an interior
and an exterior solution that encompasses mass, angular momentum, and the quadrupole moment.
While the Kerr spacetime represents an exterior solution for objects with mass and angular
momentum, discovering a compatible interior solution poses a significant challenge in general
relativity. Despite various attempts to find such solutions, including the use of exotic matter and
specific equations of state, a definitive solution remains elusive. This situation underscores the
necessity of exploring alternative approaches and incorporating additional physical parameters for a
more comprehensive description of the gravitational field [1,2].

Recent research efforts, utilizing tools like NICER and LOFT in the electromagnetic spectrum, or
Advanced LIGO and the Einstein Telescope for gravitational waves, aim to investigate or constrain
further details that reveal the structure of spinning compact objects, including their deformability,
known as "Love numbers"[3]. The interaction between spin and orbit in binary pulsars might provide
insights into the object’'s moment of inertia, and studying gravitational waves could reveal tidal Love
numbers and shed light on the equation of state [4].

The behavior of compact objects can also be described by relativistic multipole moments. These
moments can be determined through experiments involving gyroscopes or particles in orbit, linking
various physical aspects of the source with the multipole moments of the surrounding spacetime,
assuming a comprehensive solution is available.

The physics of compact objects involves three basic steps: the use of conservation laws
representing hydrostatic relativistic equilibrium conditions, the construction of an appropriate
equation of state, the matching with the exterior solution, and, finally, the comparison with
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observational data [5]. Our focus is on compact objects at the zero temperature, where the force of
gravity plays a significant role. We aim to connect models of what's inside these objects, seen as
either perfect or imperfect fluids in balance, with how they appear in the emptiness of space, factoring
in their spin and shape changes. To tackle Einstein's field equations for these objects, we simplify by
assuming they are not moving or changing shape, which makes the mathematical problems easier to
solve. This method helps us understand the gravity around these unique space objects, underlining
the difficulties and techniques in linking their inside with their outside.

Consider that the internal structure of compact objects features a mass distribution and is
characterized by a quadrupole moment. In Einstein's theory, the Schwarzschild solution describes a
spherically symmetric gravitational field in a vacuum, and according to Birkhoff's theorem, it is the
only solution of its kind. Deviations from spherical symmetry are often explained using multipole
moments, with the quadrupole moment being particularly significant. For axially symmetric mass
distributions that include a quadrupole, there is no equivalent to Birkhoff's theorem, meaning the
gravitational field can be represented by various metrics [5].

A notably simple metric was introduced in [6], suggesting the use of the Zipoy—Voorhees
transformation [7,8] to create a quadrupolar vacuum solution. This metric has been referred to as the
Zipoy-Voorhees metric, § metric, y metric, and g metric in various studies [7-14]. Solutions for
interiors containing quadrupoles was discovered in [15], and a technique for producing perfect fluid
quadrupolar solutions was developed in [16-17]. Approaches for approximate interior solutions and
analyses of the exterior g metric's properties were explored in [18]. More recently, a study [17]
examined six different extensions of the Schwarzschild metric that incorporate quadrupoles,
identifying a shared characteristic where the hypersurface =27 is singular. It's likely that other
precise solutions to Einstein’s vacuum equations share these features [19-23].

To find the solutions for the gravitational field of interior structure of slightly deformed compact
objects, we follow our previous study, where we embarked on a comprehensive examination of the
internal structure of compact astrophysical objects, such as neutron stars and white dwarfs, through
the theoretical framework of Einstein's general relativity and we will divide it into several important
parts as follows:

Construct the field equations with the quadruple parameter. Building on our established method,
we continue to explore the interior solutions to Einstein's equations by incorporating axially
symmetric and static spacetimes. The quadrupole moment is considered to first order, serving as a
fundamental parameter in our analysis of compact object deformation.

Choosing the appropriate EOSs, particularly relevant for white dwarfs and neutron stars. These
EoS provide a more nuanced view of the internal pressures and densities, essential for realistic
modeling.

Finding the matching conditions. A critical aspect of our methodology is ensuring that the interior
solutions smoothly match the exterior spacetime, maintaining continuity and physical realism. This
involves aligning the interior and exterior metrics at the surface of the compact object, a process that
requires careful consideration of the boundary conditions dictated by the chosen EoS. The matching
conditions are pivotal in validating the feasibility of the interior solutions, ensuring they correspond
to observable properties of compact objects.

Numerical Solution of Field Equations: With these EoS as our foundation, we numerically solve
the field equations to obtain the interior metrics of compact objects. This step involves detailed
computational methods to handle the increased complexity introduced by the new EoS, aiming to find
solutions that are both mathematically sound and physically plausible.

Research methodology

The line element and field equations

Numerous ways exist to express the corresponding line element, and theoretically, they should all
be equivalent [5]. Nevertheless, specific expressions of the line element prove to be particularly useful
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for examining certain issues. Experience with numerical solutions for perfect fluids suggests that for
the scenario in question, the line element for the axisymmetric case

2y 2 2
ds? = fdtz—eT[d%+d92J—“Td¢2
: 1)

here f=f(r,0),y=y(r,0),u=u(r,0),and h=h(r). A redefinition of the coordinate r leads to

an equivalent line element which has been used to investigate anisotropic static fluids [18].
The Einstein equations for a perfect fluid with 4velocity U,, density p, and pressure p (we use
geometric units with G =c = 1)

1

Raﬂ _ERgaﬁ :87Z.|:(p+ p)UaUﬁ - pgaﬂ:l

(2)

for the line element (3) can be represented as two second order differential equations for 4 and f and
the function y is determined by a set of two fist order partial differential equations. Notice also that
the pressure p and the density p must be given a priori in order to solve the main set of differential
equations for x and f. In addition, from the conservation law

aoff _
T;ﬂ _O, (3)

we obtain two first-order differential equations for the pressure

1 f, 1 f
P ==5(P+p)=- Py=—5(P+p)="
: ! (4)

that can be integrated for any given functions f(r,d) and p(r,d), which satisfy Einstein’s equations.
Finding physically viable solutions to the aforementioned field equations is challenging due to the
highly nonlinear nature of the underlying differential equations and the intense interactions among
the metric functions. In [16], some of the authors introduced a novel technique for producing perfect
fluid solutions to the Einstein equations, initiating from a selected seed solution. This approach
involves adding a new parameter to the metric functions of the seed solution, thereby creating a new
solution with physical characteristics distinct from those of the original seed solutions.

To construct the field equations for slightly deformed static objects for interior structure, we can
use the approximate line element in [17] as a guide. Following this procedure, an appropriate interior
line element can be expressed as

2

y dr
ds? =e” (1+qa ) dt* — (1+ qc+qb)1_w_
r

(1+ga+qgb)r’dg® —(1-qa)r?sin’ od¢* (5)

where the functions v =v(r),a=a(r),c=c(r),Mm=m(r),b=(r,0).
The corresponding linearized Einstein equations can be represented as

66




Abaii amvinoaser Kaz¥I1Y-uiy XABAPIIBICHI, « Dusuxa-mamemamura evlaimoapsly cepuscol, Nel(85), 2024

(0) (a) (0) (a)
Gﬂ+qu =8r Tﬂ +qTﬂ
: (6)

where the (0)—terms correspond to the limiting case of spherical symmetry. As for the energy-
momentum tensor, we assume that density and pressure can also be linearized as

p(r)=po(r)+an(r) p(r)=p(r)+aa(r) @
in accordance with the conservation law conditions (5). Here, po(r) and po(r) are the pressure and
density of the background spherically symmetric solution, respectively. The significance of
presenting the approximate line elements as mentioned above lies in the fact that it facilitates a simpler
process for aligning the interior and exterior metrics.

Matching conditions
For the exterior gravitational field of slightly deformed objects, the parameter g in the exterior
metric can be considered as small, then we can linearize the line element as [17,18]

dt® —r? [1—q In(l—z—mﬂsin2 od¢* —
r

ds® = (1—27mj{1+ qln (1_27mj

2 2
—[1+q|n(1—2—mj—2qln 1—2—m+m—zsin20ﬂ- I, rde? (8)
r rr 1_ﬂ
r

Furthermore, this line element represents a particular approximate solution to Einstein’s equations in
vacuum.

Specifically, by examining the boundary conditions at the matching surface r=rz and comparing
the aforementioned interior metric (6) with the approximate exterior g-metric (9) at the first order in
g, we can derive the conditions for matching as

2m 2m 4m
a(n)=-———¢(r)=—7—-, b(r)=-
r,—m (r, —m) r,—m

om ©9)

v(rz):%m[l—r—j m(s)=m.

z

we can impose the physically meaningful condition that the total pressure vanishes at the matching
surface, i.e.

m(z)=m,p(z)=0. (10)

From the point of view of a numerical integration, the above matching conditions can be used as
boundary values for the integration of the corresponding differential equations. It's important to note
that achieving the necessary alignment is done by setting the spatial coordinate to r=rs alone. Yet, as
highlighted in the preceding section, this does not imply that the matching surface forms a sphere. In
reality, the form of the matching surface is shaped by the conditions t=const. and r=rz, which, as
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stated by Eq. (11), specify a surface that varies explicitly with 8. Consequently, the coordinate r does
not serve as a radial coordinate.

Discussion

Solving the field equations with the Equation of state

To find the interior metrics to describe the internal gravitational field of white dwarfs and neutron
stars, we should integrate the equation of state (EoSs) together with the field equations. The explicit
form of the corresponding field equations is given in [17]. This set of equations can be integrated
immediately once the Equation of state is known. In particular, for a constant density of mass
distribution i.e., p=const., we obtain the interior Schwarzschild metric, which is the zeroth-order
solution of Einstein’s field equation.

We can provide an analyze to show the possibility of finding physical solutions for the field
equations with the additional quadrupole parameter q for the given EoS.

An interesting class of fluids are the barotropic fluids, which obey the EoS [24]. One of the
simplest cases is represented by the barotropic relation

p=awp (11)
where w is the barotropic constant factor.
The behavior of the resulting total density is represented in Fig.1.
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Fig. 1 - Behavior of the total density in terms of spatial coordinate r in geometrized units with G = ¢ = 1,
where p, =10°2p / ca®

To proceed with the numerical integration of the field equations in this case, the free parameters as

3m 1
=M R=1m=0435q=— 12
P = 4R 9= 100 12

An interesting relation on the density and pressure functions of barotropic EoS presented as following
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Accordingly, we will compare the physical properties of solutions, as expressed at the level of the
EoS, with those of realistic compact objects. Consider, for instance, a neutron stars whose interior is
described by the Chandrasekhar EoS in parametric form and geometrized units [16,25]:

g:e_o[<2y(x)3+ y(x)) 1+ y(x)2 —In(y(x)+m)}

8
P :%[(Zy(x)3 —3y(x)) 1+ y(x)2 +3In(y(x)+,/1+ y(x)2 )J (13)

where e, =m’c®/ z* is the energy density.

Figure 4 illustrates the behavior of the equation of state (EoS) for pure degenerate neutron gas,
which we adopt here for simplicity. We observe behavior comparable to that obtained from the

numerical solutions presented above.
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Fig. 4. Behavior of pressure versus density for the Chandrasekhar EoS.

In our analysis, we proposed using a different method that involves finding an effective EoS from
the above parametric EoS and plotting the result as an effective EoS of pressure versus density. It was
shown that in both cases, the effective EoS can be approximated by a polytropic equation of state,
and the appropriate polytropic parameters have been identified. We found that the internal properties
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of these compact objects can be effectively represented by a polytropic EoS, which essentially mirrors
the behavior observed in the numerical solutions.

The Salpeter EoS is particularly useful for modeling the interior of white dwarfs, where
temperatures are relatively low, and electron degeneracy pressure supports the star against
gravitational collapse[26,27]. It incorporates the effects of electron degeneracy without considering
strong interactions between particles, making it ideal for white dwarfs that do not reach the densities
where such interactions become significant. The Feynman-Metropolis-Teller EoS provides insights
into the arrangement of atomic nuclei at extreme densities, promising to refine our understanding of
the internal structure of compact objects[28]. We obtain numerical solutions that satisfy the matching
conditions for the metric functions and the energy conditions for both EoSs.

Conclusion

In this study, have focused the structure of dense objects in space, like white dwarfs and neutron
stars, using Einstein's theory of gravity, especially when they are not perfectly spherical. We pay
close attention to a property called the quadrupole moment, which helps us better describe their shape
and gravity.

To analyze these objects, we constricted field equations that include the quadrupole moment. A
significant part of our research involves selecting the right equations of state (EoS), which is
important for studying the inner pressures and densities of white dwarfs and neutron stars.

One of the main challenges we addressed is making sure that our solutions for the inside of these
objects match well with the solutions for the space outside them. This process, known as matching
conditions, is crucial for our solutions to be realistic and reflect what we can observe about these
objects in space.

Through computational methods, we solved equations to find out more about the internal structure
of compact objects and the results checked with the well-known EoS and verified that these particular
solutions can be applied to describe the exterior and interior gravitational field of compact objects.
The provide analyze shows that it is possible to find solutions for the internal makeup of white dwarfs
and neutron stars using the Salpeter EoS and the Feynman-Metropolis-Teller EoS. Both EoS are
foundational for astrophysical models of compact objects, enabling scientists to predict and
understand the complex behavior of matter under conditions that are impossible to replicate on Earth.
They are instrumental in studying the structure, evolution, and dynamics of white dwarfs and neutron
stars, offering insights into the fundamental properties of matter in the universe.
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