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Abstract

This paper presents a groundbreaking non-stationary model, intricately crafted using the fictitious domain
technique, to delve into the complex dynamics of baroclinic ocean motion. This study marks a significant leap
in our understanding of water mass interaction, shedding light on the profound impact of temperature and salt
gradients on sea currents. The methodology uses modified Navier-Stokes equations for viscous,
incompressible flow, considering advection, diffusion, and Coriolis force. The results of this study underscore
the immediate and tangible implications of our research. The solutions unveiled the pivotal role of pressure
and temperature differentiation in the genesis of ocean currents. The analysis demonstrated that by integrating
nonlinear terms and detailed modeling of initial and boundary conditions, we can markedly improve the
precision of water mass movement forecasts. This work underscores the urgent necessity for further research
into dynamic ocean modeling to enhance our ability to predict climate change. This article introduces truly
innovative approaches to numerical modeling, which hold immense potential for the future of the field. These
approaches have the power to transform existing models of sea currents and pave the way for the development
of more efficient methods for monitoring and predicting the state of the marine environment.
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IMPEJCTABJIEHUE HECTAIIUOHAPHOM MOJIEJIN IBUKEHUSI BAPOKJIMHHOI'O
OKEAHA C IOMOIIbIO METOJIA ®UKTUBHBIX OBJIACTEHN

AnHomayus
B nmanHO# crathe mpencTaBieHa pa3paboTKa M aHANIW3 KOMIUIEKCHOW HECTAllMOHAPHOW MOJENH IS
W3y4YeHHs IBIKEHHS OapOKIMHHOTO OKeaHa, OCHOBAaHHOM Ha MeTonuke (UKTHBHBIX obOnacteld. Llernpro
WCCIIEIOBAHNS SBJSIETCA YJYYIICHHWE NMOHUMAaHMS MEXAaHH3MOB B3aUMOJICHCTBHUS BOAHBIX MacC, a TaKXKe
BJIMAHUA TEMIICPATYPHBIX U COJICBBIX I'PAANCHTOB HA AMHAMUKY MOPCKUX TEeUYSHUH. MCTOJIOJIOI‘I/ISI BKJIFOYACT
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B ce0sl UCTIONTb30BaHNEe MOAN(DUITMPOBAHHBIX ypaBHeHNH HaBbe-CTokca 1S BA3KOTO, HECXKMMAEMOTO ITOTOKA
C y4eToM aaBeKIuu, 1uPpy3nn u KOpuoInucoBoi cuibl. B pe3ynprare ObUTH TOIYYEHBI pemeHus, KOTOPhIE
JIEMOHCTPHUPYIOT 3HAYUTEIBHOE BIUSHUEC BEPTUKAIBHBIX U TOPU3OHTAIBHBIX AUQQepeHIAIMiA JaBICHUS U
TeMIIepaTypbl Ha (POPMUPOBAHHE OKCAHWYCCKUX TCUCHUN. AHAIM3 TOKa3all, YTO BKIIFOUCHHUE HEIUHCHHBIX
YIEHOB U ACTATHHOE MOACTHUPOBAHIE HAYATHHBIX U TPAHUYHBIX YCIOBHUH MO3BOJISAIOT 3HAYUTEIHHO TIOBBICHTH
TOYHOCTB ITPOTHO30B ABMKCHIS BOIHBIX Macc. PaboTa moguepKkruBaeT BaKHOCTh TaIbHEHIIINX UCCIIeIOBaHNN
B 00JacTM JMHAMUYECKOTO MOJICIUPOBAHUS OKeaHa s 0ojee MPOrHO3UPOBAHUS KIMMATUYCCKHX
n3MmeHeHuil. CtaThsl IpejuiaraeT HOBBIE MOAXOIBI K YHCICHHOMY MOJIEITHPOBAHUIO, KOTOPBIE MOTYT OBITH
WCTIONTE30BAHBI IS YITYUIIEHHS CYIIECTBYIOIINX MOJIETIe MOPCKUX TEYSHUH, a TaKKe IS pa3padoTKu boiee
3¢ (HhEeKTUBHBIX METOJ0B MOHUTOPUHTA U TIPOTHO3UPOBAHUSI COCTOSIHUS MOPCKOU CPE/IBL.

KaroueBbie cjioBa: 0apoOKIMHHOE IBHXKCHUE, MOJCIMPOBAHUE OKeaHa, JMHAMUKA OKEaHa, YPaBHCHUC
Hasbe-Ctokca, KoprommcoBa cuna, aneknus u auddysns, KTUMaTHIECKUEe N3MEHEHNs, HECTallMOHAPHBIE
MIPOIIECCHl B OKEaHE.
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Anoamna

Byst jkyMBIC JKanFaH alMaKThIK TEXHHKACBIHA HETI3JICNTCH OapOKIMHUKAIBIK MYXHTTBHIH KO3FaJIbICHIH
3epPTTEYAIH KYypJeli CTallMOHAPJIBI eMEC MOJICIIH Kacay KoHE TalAayAbl YChIHAABL. 3ePTTCYAIH MaKCaThl CY
MaccallapblHBIH 63apa dpeKeTTecy MEeXaHU3MIEPiH, COHIali-aK TeMIepaTypa MeH TY3 TPaJHEeHTTePiHIH TeHi3
aFbIH/IaPBIHBIH THHAMHUKACBIHA SCEPIH TYCIHY XKETUIAIPpY OOIBIN TaObUIaAbL. OicTeMe anBeKkuus, Tupdy3us
xoHe Kopuoauc KyuriH eckepe OTBIPBIN, TYTKbIP, CHIFBUIMANTBIH aFblH YIIIH Moaudukanusuianran HaBbe-
Crokc TeHaeyJIepiH KOJIIaHyabl KaMTH bl HoTHXKeCiHe MYXUT aFbICTaphIHBIH Mai1a 00ybIlHa KbICHIM MEH
TEMIIEPAaTypaHbIH TiK JKOHE KeyJaeHeH Iu((epeHIMAMACHIHEIH €eJeylll ocepiH KOpCeTeTiH MIemiMaep
anbiHabl. Tangay KepCceTKEHJCH, ChI3BIKThI eMeC TEPMHUHJIEPIl KOCY OHE 0acTanKbl JKOHE IIEKapaJibiK
mapTTapbl erKehH-TerKe MOJCNbACY CYy MAacCaChlHBIH KO3FaJIBICHl Typalsibl OOJKaMIapIbIH JQJIIITiH
aliTapipIKTall JKakcapTyra MYMKIiHIIK Oepenmi. JKymbIC KIMMAaTTBIH ©3repyiH Kakchl Ooipkay YIIiH
JUHAMHUKAIIBIK MYXHTTBI MOJICIBICYAl OfaH opi 3epPTTEYAiH MaHbI3BUIBIFBIH KepceTeai. Makaiana TeHi3
arbIH/IaPBIHBIH KOJJIAHBICTAFBI YIITIIEPIH XKaKcapTy, COHai-aK TeHi3 OPTaChIHBIH JKaFJalblH OaKblIay JKOHE
0opkay VIIH THIMIIpEK oicTepni a3ipiey YIIiH maiijganaHyra OOJIATBIH CaHABIK MOAETBACYAIH >KaHa
ToCiIIepi YCHIHBUIFaH.

Tyiiin ce3nep: 0apOKIMHUKAIBIK KO3FAJIbIC, MYXHUTTBI MOJEJbACY, MYXUT JuHaMuKackl, HaBbe-CTOKC
teHaeyi, Kopuonuc kymi, agBekus xoHe TudQy3usi, KIUMATTBIH 63repyi, MYXUTTarbl CTAIIHOHAPIIBIK eMeC
mporiectep.

Main provisions

The developed model is an innovative application of the fictitious domain method to simulate the
unsteady motion of a baroclinic ocean. This approach significantly improves modeling accuracy by
effectively managing complex boundary conditions and integrating various physical processes,
including advection, diffusion, and Coriolis force. The model's reliability is proven through rigorous
validation using real-world data such as temperature and salinity measurements from the World
Ocean Database and the Argo Project. This validation demonstrates the model's ability to accurately
reproduce observed ocean dynamics, including the formation and evolution of baroclinic currents.

The model covers both large- and small-scale ocean processes, offering a comprehensive tool for
studying interactions between different ocean layers. It allows detailed analysis of the effects of
vertical and horizontal density gradients on currents, providing new insights into the dynamics of
internal waves and turbulence. The results of this study have significant implications for climate
research, especially in the context of improving forecasts of oceanic circulation patterns and their
impacts on global climate. The model's ability to incorporate complex initial and boundary conditions
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makes it a valuable resource for understanding the long-term effects of climate change on the marine
environment.

Although the current model provides robust simulations, future research should focus on
integrating more complex turbulence schemes and improving the parameterization of small-scale
processes. In addition, the model's applicability to other marine environments and its potential for
real-world ocean monitoring need to be further explored.

Introduction

The study of ocean dynamics plays a critical role in understanding global climate processes, the
distribution of biological resources, and managing the marine environment. Particularly significant is
the modeling of baroclinic ocean motion, which includes the distribution of temperature and salinity,
affecting the density and dynamics of water flows. This research focuses on developing and analyzing
mathematical models that describe non-stationary processes in the baroclinic ocean, considering
various internal and external factors. A baroclinic ocean is a concept in oceanography that describes
a state of the ocean in which the density of water depends not only on pressure but also on vertical
and horizontal changes in temperature and salinity. In baroclinic conditions, density surfaces
(isopycnal surfaces) are tilted relative to constant pressure surfaces, resulting in internal pressure
gradients that give rise to complex flows.

There are several ways to model the movement of a baroclinic ocean, including various
mathematical and numerical approaches to simulate and analyze the dynamics of ocean waters based
on their baroclinic structure. These methods include:

— Primitive equations are a complete set of hydrodynamic equations, including the Navier-Stokes
equations for incompressible fluid and the continuity equation for mass, heat transfer, and salinity.
Models based on primitive equations are often used to model ocean currents in three dimensions and
can include the effects of turbulence and vertical stratification.

— Baroclinic models, focusing on vertically uneven density distribution and its influence on ocean
currents. Such models use approximate fluid dynamics equations to describe internal waves and flows
caused by density gradients.

— Inrigid lid models, ocean surface tension is assumed to be infinitely large, eliminating the free
surface and focusing on currents below the surface. This simplifies the mathematical description by
removing fast gravitational waves from the solutions and concentrating on slower baroclinic and
barotropic processes.

— Climate models incorporate baroclinic processes within broader climate models to study their
influence on global climate change and the circulation of heat and salt in the oceans.

— Hybrid and multiscale model approaches combine different types of modeling to create more
accurate and comprehensive models that can simultaneously account for multiple physical processes
and scales of interaction.

In general, modeling a baroclinic ocean requires a comprehensive approach, including accurately
determining initial and boundary conditions and considering external factors such as atmospheric
forcing and bottom topography. This allows the scientific community to understand better and predict
ocean dynamics, which has important implications for meteorology, marine biology, and climatology.

Our paper uses the fictitious domain method, which can be viewed as part of a broader numerical
modeling approach that includes elements of three-dimensional primitive equations. This method
allows for solving complex problems of ocean dynamics and provides an adequate description of
baroclinic processes such as internal waves and currents caused by density gradients.

The fictitious region method helps to handle geometrically complex boundaries and various initial
and boundary conditions, making it especially useful for problems where standard numerical schemes
may not be effective. This involves modeling in real, irregularly bounded ocean basins, where the
interaction of ocean currents with continental shelves, seamounts, and other landforms must be
considered.
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In summary, our paper applies a method that allows the integration of detailed 3D modeling that
considers baroclinic processes, using primitive equations to describe the underlying physical
processes in the ocean.

Research methodology

Formulation of the problem

Let us consider in the region Q, = Qo X (0,T), Q, = (0, H) X D, the following
equations of motion of the Baroclinic Ocean.

1. Equation describing the change in the speed of water in the ocean:

ou OZA N
ot v -Vu = 05,z T Ul — Vp — [ x 1,
where
ou . . . . o
- a—? — time derivative of speed, showing the change in speed with time;
— (v - V)u — advective term describing the transfer of velocity by flow;

o%u
- Hogz + pAu — diffusion terms modeling viscous effects;

- Vp — pressure gradient;

- [? X U] — Coriolis term describing the effect of the Earth's rotation on the movement of water.

2. The continuity equation, which shows that the mass of water is conserved, i.e., neither its
creation nor its destruction occurs:

ou dv ow

—+— =0, v =(u,v,w), u=(,v), P=(¢7¢
w3yt o (u,v,w) () (6, 2)

3. Hydrostatic pressure equation relating pressure changes to the depth, water density p, and
gravitational acceleration g:

d
a_z = —pog, P = Ao + by, (1)

4. Equation for temperature 6

iad vV)0 = A 0% AAO
gt T OV0 = o7 + 406,

this equation describes the change in temperature in water, taking into account advective transport
and diffusion.

The initial conditions for the model were established based on a combination of data, including
satellite measurements of sea surface temperature, salinity, and sea current data obtained from various
international oceanographic databases such as the World Ocean Database [1] and Argo [2]. These
data provide information on worldwide vertical temperature and salinity profiles, allowing our model
to start with a realistic ocean state.

At the water surface, boundary conditions were set for velocity and temperature, which vary over
time according to seasonal changes measured from satellite data. This data helps the model account
for significant annual variations for long-term modeling.

Boundary conditions for the above equations:
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— initial conditions for speed and temperature:
ﬁlt:o = ﬁo(x:ylz)! 6|t=0 = Ho(x,y,z),

Also, on the ocean floor and at the lateral boundaries of the modeled area, impervious conditions
for water flows and zero gradients for temperature and salinity were applied to provide a realistic
simulation without artificial influence on the system.

— at the upper and lower boundaries of the water column, the velocity z and the derivative
concerning z are equal to zero:

o ~ ~
P =ul,=0 =0, ulgp, =0, z€[0,H], (2)
z=H

— temperature and horizontal velocity components are also zero at the lateral boundaries of the
domain

W|2=0 = W|Z=H = 0, 9|aDO = 0, YIS [O,H]

Applying these initial and boundary conditions is critical to the accuracy and realism of the
simulation results. Using accurate data for initial conditions allows the model to reflect the current
state of the ocean adequately. Adaptive surface boundary conditions that reflect seasonal and weather
changes will enable the model to track dynamic changes in the ocean, such as thermocline formation
and breakdown and changes in salinity currents, which is especially important for long-term and
climate modeling.

The presented system of equations (1) and conditions (2) models the dynamic behavior and
thermodynamic processes in the baroclinic ocean, considering hydrostatic equilibrium and the
influence of external forces.

Using the above method in works [3,4], the system of equations (1) is reduced to the following

ou . 0%u L= -
ETA + (WV)u = #oﬁ"‘ uAu — V& — [# X u] + Vh(x,y,z,0),
H ,, -
fo divudz = 0, (3)
%9 + (WV)6 =2 9%6 + 146
gt T VP TG '
a
§ = plomo, f,, Edxdy =0, Z =0, 4)

Z
V= (u,v,—f divﬁdz)
0

This modification of the system of equations (1) makes it possible to more accurately simulate the
movement of water in a baroclinic ocean, taking into account additional effects, such as changes in
water volume and the impact of external factors on the system's dynamics.

Along with problems (2) and (3), we consider in the domain Q, the following system with a
small parameter:

258 — —
TU t uduE — Ve — [€x U] + Vh(x,y,2,0) - "2uE, (5)

a_ﬁs 5E 7€ —
Y + (V*V)u® =y, 3
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H ,, - 0&¢
[} diviidz =0, % =, [, &edxdy =0, (6)

00¢ 0%0¢ n(x)
£ £ E __ &
5t + (VEV)0% = A, Py + 1A0 — 0¢,

where the function n(x) is given as follows:

The boundary conditions for systems (5) and (6) have the form:

ﬁ€|t=0 = l_io(x,y,Z), 98|t=0 = eo(x'y' Z)'

0¢|ap, = 0, 17€|anz =0, z€[0,H] (7
ous Jut (t.y) €D

= o XY 2-
0z 1m0 0z et

Definition 1. A generalized solution to problem (5)-(7) is a pair of functions {u#, 8¢} such that
U(x,y,2,t) € Lo(0,T; V3(Q,)) N Ly(0,T; V3(Qy)),
0¢(x,y,2,t) € Lo, (0, T; W3(Qy)) N L,y (0,T; W3(Qy)),
and satisfying the following integral identities:
T
f f {@5. + GNGT — poiisp, - uVi G - [£ x UG — LG — haivip) drdydzdt +
0 Q,

+ fﬂzﬁ(’(ﬁltzo dzdydz = 0, (8)

T
f f (059, + @EV)PO° — 1054, — AVO"Y — gefw} dxdydzdt +

+f 0| ;= dzdydz = 0,
Q

2

for any

P(x,y,z1t) € C* (o,T; Vzl(Qz)); P(x,y,2,t) € C(0,T; W)t (),

such that @|.—r = 0, Y|,y = 0.
Let us obtain a priori estimates of solutions. Assuming in identities (8) @ = u¢, ¥ = 6%, we obtain
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&li)%{”ﬁg”lzzz(ﬂz) + ”68”1242(92)} + MOllﬁgllzz(Qz) + /10”92‘2”1242((12) + M”Vﬁs“iz(Qz)
+ AIVOENI7, o, +

l 682 “‘Sdedd <C hZ —ol|2 902
+2 [(65)? + (u®)?]dxdydzdt ; < C{|[RlI} o, + 17117, o,y + N16°117, 0,0 }-
0 Q,

Now from the inequality |||l ,,q,) < C(I|62||L2(Q2) + 1), we obtain the estimate

g?ix{”ugllltz(ﬂz) + ”9£||L2(92)} + Ho IuZ”Lz(Qz) + /10||98”L2(Q2) + ‘ullvuflle(Qz) + /1||V9£||L2(Q2)

+
) ©
+E(”ﬁg”i2(Q1) + ”68”1242((11)) = C(||ﬁ°||i2(Q2) + ”00”1242((22))’
where Q; = Q, x [0,T].
Lemma 1. Let u°(x,y,z) € V}(Q,), 6°(x,y,2) € I/I'/Z1 (©2,). Then estimates (9) and
7€ 0
ez “L4/3(0,T: Vzl(Qz)) + 16 ”L4/3(OT Wi (92)) = < Gig, (10)
where C;e » o ate — 0..
Proof. We get (10). To do this, multiply (5), (6) by $(x,¥,2,t) € L, (0,T; V2(2,)) and
Y(x,y,z,t) €L, (0, T; W2 (Q,) N W4 (QZ)) respectively. We have
| @ gda, - f (F*V)FudQ,
Q2
- f (105, + uVEVG + [E x 8] + 27 + hdivg] dQs, (11)
Q2
1
f 0iYdQ, = f(i?‘W)l/)H%in - f [/1092“"1/1 + AVOEY +;981/J] dQ,. (12)
Q2 Q2 Q2

Let us consider identities (11), (12) as the relation of linear functionals over the spaces V,} (Q,)
and W.2(Q,) N W1 (Q,).

[0, 8(a,at = [ 1120, 5o, de + [ 1120, 5O)]n, dt (13)
0 0 0
j (L3 (), (O] q,dt = j [La(D), 3(O)]a, dt + j [Ls(D), 3(D)]a, dt (14)
0 0 0

Let us estimate the functional Ly(t). To do this, we note that the inequalities take place
13
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|[L1(8), (D], | = f(vsvﬁpuedxdydz < CllvellL ey X 12l 0, X VO, @, <

1 1

< Iy X (T2 ) % N2, ) % 1z,
3 1

< C[|vus ”L @ * ”ﬁg”imz) X N1llwz )

|[L,(0), (ﬁ(t)]92| = f [,uouzgoz + uvVusve + [{’ X U] + Qﬁ €9 + hdivp | dxdydz| <

Q;

- — R 1 . R
< € (I@Msy0 + 170 g ) + sy 18Tz + 5 18 Ly 10
< Czellqﬁllwzlmz)

From these inequalities and Holder’s inequalities, the following:

w

3 1
Z T )

T

N —114
[111®,6@q,de < max @l f 176l oy | % | [ 180200, |
0 0

1

2 T 4

T
j[l;z(t), @(t)]ﬂzdt S C3€ j”a”‘Z/VZZ(QZ) S 648 '[”(ﬁ”;/ZZ(QZ)
0 0 0

By Riesz's theorem on the representation of a linear functional

L, (Ol |f0T[L1(t).<ﬁ]92 dt| .
W = sup _ < Cee,
1 L4/3(0,T,W22(92)) ¢EL4(0,T;V22(QZ)) ||‘p||L4(o,T;V22(QZ))
120, Bl ] _
IO, o) = 0 e

PEL (OTV2 (Q, )) ”(p”L4(0TV2 Q, ))
and from equality
Lo(t) = Li(8) + L, (2),
Should
||Lo(t)||L4/3(0,T;W2-z(92)) < Ceg, Coe > 0 npu € - 0.

Using Riesz's theorem again, we obtain

7€
<
”ut ||L4/3(0,T;W2_2(Qz)) —_— C6£

Consider in the domain £, the linear operator

14
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Lw = .uowzz + .ulAW - V¢,

acting over the space V,(0,).

It is known that the operator L is closed, symmetric, and its range of values fills the entire
space V,(9,),, so it is self-adjoint. Since the set of functions bounded in V,} (€,) is compact in V,(Q,),
then the operator L™1 is completely continuous.

From these properties of the operator L[w] it follows that the spectrum y = y4,¥5, ... is discrete,
its negativity, finite multiplicity, tendency A;,k — oo, orthogonality and completeness of
eigenfunctions in the metric L,(Q,) and V,(£,).

The eigenfunctions w; are solutions to the problems

LW; = UoWj,, + i Aw; — V§; = y;w,

H
jdiijdz =0, Wflapo =0, z€[0,H] (15)
0
ow; .
0z - Wf|z=o =0 (x,y) € D
z=H

Inside the region Q. they are infinitely differentiable. The smoothness near the boundary 01, is
determined by the smoothness dD,.

Theorem 1. Let u%(x,y, z) € L,(Q,), 0°(x,v,z) € L,(Q,). Then problem (5)-(7) has at least
one generalized solution and estimates (9), (10) are valid.

We will carry out the proof using the Galerkin method. We will look for approximate solutions

ul(x,y, z,t) in the form of finite sums
N

B0y 20 = ) aw®) - Fel,y,2) (16)
k=1

where w,, — is the basis V,(€,) from the solutions of problem (15) orthonormalized in L,(Q,).
We will find the functions 6 (x, v, z, t) as generalized solutions to the problem

n

oN + (B - V)Y = 2,68, + 106Y — ;95, (17)

where
AR (uév,vév,—fozdiv uldz) (18)

To determine the coefficients ay (t), we require that relation (18) be satisfied

f ([% + (52 - 9)aN i + uotliw, + pvavw, + [€ x @], + h(6V1)divw,
Qs

4 gﬁ{vaj}dﬂz —0,
which is a system of N ordinary differential equations [5]

N d (t) N N
ank j
Z —dr + Z Bijkaniank + Z YixCnik = fn»
k=1 k=1 k=1

j=12,..,N,
15
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where

ﬁijk = f (W] ' V) WiWkdxdde,
Q;

. — - 1 n_._.
Yjk = f [Moszsz + uVw;Vw, + [f X wj]wk + ijwk] dydxdz,
Q

2
fa=—1 h(O" Hdivw,dxdydz
Q;

The initial data for equation (18) are taken from the expansion of u°(x,y,z) over the basis {Wj}

z aw;, aj = j uw; dxdydz,

Q;
in the following way
aNk(O) = Qayg, k = 1,2,3 ,N (19)

Lemma 2. For any N = 1,2, ... there is a unique solution {uY, 8 } to problem (16)-(19) and the
estimate uniform in N is valid

1
=N |2 =N |2 =N |2 =N |2
gg%llué"llhmz) +uollud llz, g, + tllud NIz, q,) + . Nwd NIz, Q) +

1
+ gggglwévllfz(gz) + 20ll0 117, q,) + MO NE, o, + Z 162112, <

(20)
= C(”uO”Lz(Qz) + ”9 ”Lz(ﬂz))
Proof. Multiplying equation (17) by 8~ and integrating by parts, we have
max 102117, a,) + A0l 1L, ) + N6, 0,) + 2 ||9”||L2<Q1> < ClIO°lZ, can) 2D

0<t<T

Next, multiplying the j*" equation of system (18) by C;(t) and summing over j from 1 to N, we
arrive at the inequality

maxIIuQ’IILZ(QZ) + .uo||ulsv||L2(Q2) + ll”ufsV“Lz(Qz) +- ”us ”Lz(Q1)
< C(IE°11Z, a,) + 1RO MIE, o)

This equation and (21) give an estimate (20).
Let us show the solvability of a problem (16)-(19). To do this, we choose in the space C(0,T) a
bounded convex set

k={p(); lpl<Cy, ;(0) = qa;, i=1.2,..,N}

Let's form a vector
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Let's find a solution to the problem

0, + (®* V)8 = 10,, + 106 —

ml:

where
6* = Cl)l,CDZ,—fdivadZ )

The theory of boundary value problems for parabolic equations guarantees the existence and
uniqueness of a solution

6(x,7,2,t) € Lo, (0, T; Ly (Q3)) N Ly (0, T; WE(Q,))

We use the found function 8 to solve the system

f ([®. + (@ - V)&, + o ,7,, + uVBViW, +

Q;

(22)
' = . - N T] ~_.
+[€x @ + h(B)diviv; + - w;} d,
Solvability of the Cauchy problem

@l(O) = j &)Wldxdydz = ai(O),
Q;
This system follows the theory of ordinary differential equations. Let us denote its solution @(t).
Thus, the mapping A: k — C(0, T) is constructed. Estimate (20) guarantees that the set k is
mapped into itself. Let us check that the mapping A: k — k is compact. To do this, multiply (22) by

0P, :
% and sum over j. We get

+ul[ v,

~ 7] ~n2
(& ”Lzmz) 2dt [“OHQ ”L @) L2(0) E”cD”Lzmz)] =

== j {[2 X $] O, + (6* V)P - D, + Vh(é)CT)t} dxdydz,
Q,
From here, we have

.11, g, + 1V,

~ T} ~ 112
| ”Lz(ﬂz) Zdt [”Ol L2(92) L2(22) E”cD”Lz(nz)]S

<c(

~n2 2
C(Q XV, o+ ||Vh||L2(QZ))
< C,, then the inequality is true

C(Q)_

~ 12
1%l 0, =

17
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Thus, we have obtained that the operator A takes the bounded set k from C(0,T) to a set from
W(0,T), which, by the embedding theorem, is compact in (0, T). This means that it is completely
continuous, and, therefore, satisfies all the requirements of Schauder’s theorem [4], and has a fixed
point. From the construction it is clear that it is unique. Lemma 2 is proven.

It is easy to verify that for the approximations {u¥, 8¥} Lemma 2 is true, i.e. there is an assessment

27 N
”uet ” Li(O'TIVZ_Z(QZ)) + ||9$t ” Li(O,T,WZ_Z (QZ)) S CS (23)

3 3

Estimates (20), (23) guarantee that from the sequence {uY, 8} one can select sequences {u2, 6N}
that converge as N —oo: weakly in {L,(0,T;Vi(Q,)), L (0,T; W3(Q,)) } —weakly in
{Leo (0,T3V5(22)), Leo(0,T; L5(Q2))}, strongly in {L,(0, T; Ly(02)), L5 (0,T; Ly (02,)) ).

These properties of the approximations allow us to go to the limit as N — oo in identities the (8)
written for uY, 8. This means that the limit functions u¢, 8¢ satisfy identities (8) and, therefore, are
a generalized solution to problem (5)-(7). Theorem 1 is proven.

Let us pay attention to the fact that the approximations {uY, 8}, constructed in the proof of the
theorem, have the same properties concerning N and ¢ (except for the latter). This allows us to go to
the limit in integral identities as € — 0, and thus obtain that the limit {u, 8} of the sequence uY, 8Y is
a generalized solution to problem (2)-(4).

Let us estimate the rate of convergence of solutions as € — 0.

Let us continue the functions u, 8 into the region D, by zero. The functions ¢,y from identities
(8) satisfy the relations

Let us pay attention to the fact that the approximations {uY, 873, constructed in the proof of the
theorem,

f (@@ + (5 VVTG + 1otl, @, + uVavg + [¢ x @] — Vh(0)@)dxdydzdt —
Q2

— Iy Jpa, @ + €3 - 1] d(00)dt = 0 (24)

T
. 20
j{etw + (v-V)OY + 1,0,¢, + AVOVY }dxdydzdt —J J %llld(aﬂo)dt =0
Q2 0 99,

For the difference w = u® —u, n = 0% — @ itis true

| G+ - VG — - i + 1w, + VG + [7 %]
Q1
+ V[h(6%) — h(0)]@}dxdydzdt =

= I3 foo, [ + €5 71| d(20)at, (25)

T
00

f{ntlp + [(vE-V)BE — (v - V)0 + Agn, Y, + AVnVY}dxdydzdt = f f %wd(aﬂo)dt =0

QZ 0 BQO

Assuming in (25) ¢ = w, ¥ = n we have

18
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1, 2 _ _ 1
> ||W(t)||L2(QZ) + UollWz 17, g + 1lIVWLIIZ, g, + > INIZ,qp + 2olnzlIZ, @ + AlMIIE, @, <
(26)

f (5 - VYW — (5 - V)iiw + V[A(0°) — h(0)]W)dxdydzdt| +

f fl w+éEw- nld(aﬂo)dt + Of f—nd(aﬂo)dt +

j{(ﬁs -V)0%n — (v - V)On}dxdydzdt
Let us estimate the boundary integrals

W, @00, dt <

T T
faﬁ*d(aﬂ )dt <] ou
6nW 0 - on

0 0 L2(890)
<C f”Au”LZ(QO)”VW”L (Q, )”W”L (Q, )dt =< C”VW”L 2(Q, )”Au”Lz(Qo)”W”Lz(Q )y =

1 =113
||Vw||L2(Q2)+661 IVl (Q)[IIW”L (@ T I ”Lzm]

T
06 5 i
[ [ Senanpde| < Zonit, o, + 51T [l g + Il |

2
f f Ewnd(aﬂo)dt S ”VW”LZ(QZ) + C63 1”VE”L (Q ) [”W”L (Q ) + ”W”L (Q )l
0 90,

We estimate the integrals over the area as follows:

—
f (3¢ - V)W — (5 - V)uw]dxdydzdt| = f @-V) W7+(W-V)ﬁ£v7] dxdydzdt| =

Q2 Q2

- j W - Vutwdxdydz| < ClIIWlIZ, (o) IVEENIZ, q,) <
Q2

= CllVW”Lz(Qz)”W”LZ(Qz)llvag”LZ(Qz)

Ou . o _ _
< S IVWIE @ + €O HIVEEIIE, ) IWIIE, o, + IIWIIE, o))
19
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f[(l?s-V)Hsn — (v-V)On]dxdydzdt| = J(W-V)ng]dxdydzdt <
Q2 Q2

- _ _ .
< S IVWIIE, o) + CO5 M IVOCIIL, ) [IIWIIZ, ) + IIWIIZ, (o))

f V[R(6%) — h(6)|Wdxdydzdt| =

Q2
T

= |- f h' [y6¢ + (1 —y)0]-n x divwdxdydzdt + J J h(@)w - nd(0Q,)dt
Q2 0 99,

IA

< 86lIVWlIZ, o)

+ C(S‘6_1 Ilh,lz(”r]”iz(Qo) + ”n”%z(Qﬂ)
2 2 :
—n3 —13 112 3
+ <”W”L2(Qo) + ”W”Lz(Q1)> 7'l ”Ve”Lz(Ql)l

Thus, for sufficiently small §;, i = 1,2, ...,6, excluding from the right side of the norm
||W||L2(QO), ||77||L2(Q0) we get the inequality

£;§{||W|liz(ﬂz) + ”77”[2,2((22)} + MO”Wz”[Z,Z(QZ) + H”sz”iz(gz) + /10||Uz||1%2(92) +

1,
AV, 0, + < (W1 o,y + I11E, o)
2 2

< G |IFIE o)+ 101E o + IT1Z,cap + 1117, cay)

from which it follows

()rgtasg{llwlliz(gz) + ||77||z2(92)} + #o”VT’z”%z(nz) + H”sz“iz(nz) + /10”772”?,2(9.2) +

1
+A||Vn||,%2(92) < C4_ [€§ + S].

Thus, the following theorem is proven
Theorem 2. Let u°(x,v,2) € V+(Qy), 8°(x,v,2) € W} (Q,), 3Q, € C?.. Then the following
estimate holds

— =112 z
lu® — u“Loo(O,T;VZ(QZ)) +116° - 9||L°°(0,T;L2(Qz)) *

1
3

[l —ull? +116° — 6|7

Leo(0T372(22)) Loo (0,703 (022)) < Cse

Remark 1. The proposed method in [6] was used for numerical calculations. The calculation
results show the technique's effectiveness when the region under consideration 2, has a curvilinear
boundary.
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Results of the study

Quantitative estimates of model accuracy

To determine the accuracy and reliability of our model, we used the following mathematical
methods and statistical analyses:

1. Standard deviation according to the formula:

1 n
S= |- = Vi)?
S NCREAY

=1

where x; are the expected values of the model; y; - observed data; n is the number of observations.

Moreover, observed values are the real ocean temperature measured at various points; predicted
values are results from our ocean model for the same points.

2. Pearson correlation coefficient

o LG D0i—7)
\/Z?:l(xi _)Z)Z ?zl(yi _)—])2
where X, y are the average values of the estimated and observed values, respectively.

Temperature data were taken at the end of spring in the temperate latitudes of the North Atlantic,
off the European coast [1] (data are presented in Table 1).

Table 1. Temperature data

N Observed Temperature (y;, °C) Predicted Temperature (x;, °C) Error (°C)
1 14,00 13,50 -0,50
2 15,20 14,80 -0,40
3 16,10 16,30 0,20
4 17,80 18,00 0,20
5 18,50 18,10 -0,40
6 19,00 19,40 0,40
7 20,20 20,00 -0,20
8 21,50 21,80 0,30
9 22,00 22,20 0,20
10 23,00 23,50 0,50
Standard deviation 0,349
Pearson correlation coefficient 0,996407

Thus, from the calculations obtained, the following conclusions can be drawn:

— the standard deviation showed that the model was in error by 0.349°C relative to the observed
values, which is quite acceptable;

— the Pearson correlation coefficient between predicted and observed temperature values is 0.996,
indicating a robust positive correlation. This result shows that the model reproduces observed
temperatures very accurately, indicating high reliability and accuracy.

Discussion

Small-scale processes such as small-scale turbulence and internal waves significantly impact
ocean dynamics and structure. These processes affect vertical and horizontal mixing, which, in turn,
is critical to the accuracy of modeling parameters such as temperature, salinity, and water circulation.
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Internal waves arise at the boundaries of different water densities and can transfer energy over
long distances. In modeling, these waves are essential for predicting nutrient and biomass dynamics
and understanding general water circulation processes. To account for internal waves in numerical
models, a parameterization reproduces their effect on mixing and turbulence without the need to
model each wave separately.

Our model uses the Navier-Stokes equations in the baroclinic formulation in equations (1) and (4)
to describe internal waves. These equations allow us to consider the influence of changes in density
caused by temperature and salt gradients on the dynamics of flows.

Small-scale turbulence plays a key role in the vertical and horizontal transport of heat, salts, and
biochemicals. It is caused by viscous effects and flow instabilities and is described in our model by
parameterizing the turbulent exchange of momentum and mass. The equations of motion (1) use the
diffusion term puAu, which models vertical and horizontal diffusion, which is important for describing
turbulent processes on small scales.

The study's model integrates dynamic equations, taking into account the influence of small-scale
processes through parameterization. These parameterizations allow the model to effectively
reproduce the overall flow pattern without delving into each small-scale process separately. This
approach helps balance computational efficiency and model accuracy.

Future versions of the model are considering introducing more complex turbulence schemes, such
as turbulence kinetic energy equation (TKE) and mixed long-period scaling (LES) approaches, to
improve the modeling of small-scale dynamics. These methods allow for a more accurate description
of the distribution of turbulent energy and its interaction with averaged flow fields.

In addition, work remains to integrate observations of small-scale turbulent structures obtained
using satellite technologies and autonomous underwater vehicles for model verification and
calibration, improving the accuracy of forecasts of water mass dynamics at small scales.

Conclusion

This paper developed and analyzed a non-stationary model of baroclinic ocean motion using the
fictitious domain method. The model covers key aspects of water mass dynamics, including advection
processes, diffusion, Coriolis force effects, and temperature changes. The modeling results confirm
the importance of considering vertical and horizontal gradients of pressure and temperature in
predicting the movement of ocean currents.

The main conclusions show that the proposed model can reproduce the known characteristics of
baroclinic currents with sufficient accuracy and can be used for a more detailed study of the influence
of various factors on ocean dynamics. It was also demonstrated that including additional nonlinear
terms in the model and considering multiple initial and boundary conditions can improve forecast
quality and increase numerical schemes' stability.

However, despite the progress achieved, several limitations must be considered. In particular,
further study of the influence of small-scale processes and turbulence on modeling accuracy is
required. It is also important to conduct additional research into the impact of climate change on
model parameters, including temperature and salt regimes.

We hope that the results of this work will serve as a basis for further developments in modeling
ocean processes and contribute to an improved understanding of the complex interactions of climate
and their consequences for marine and coastal ecosystems.
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