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ЖАДЫ МҮШЕСІ БАР КЕЛЬФИН-ФОЙГТ ЖҮЙЕСІНIҢ ШЕШIМIНIҢ 

ЭКСПОНЕНЦИАЛДЫ КЕМУІ 
 

Аңдатпа  

Математикалық физика есептерінің қисындылығын, яғни шешімнің бар болуы, жалғыздығы мен 

орнықтылығын зерттеумен қатар оның шешімдерінің сапалық қасиеттерін зерттеу де маңызды болып 

табылады. Жалпы алғанда, математикалық физиканың және гидродинамиканың сызықты емес 

теңдеулері мен теңдеулер жүйесі үшін қойылған тура мен кері есептерінің шешімінің глобалды бар 

болуы мен жалғыздығын дәлелдеу оңайға соқпайды, себебі сызықты емес есептерді шешудің бірыңғай 

әдістері жоқ. Алайда, шешімнің кейбір сапалық қасиеттерін зерттей отырып, мәселен, ақырлы 

уақыттағы шешімнің қирауы не нөлге айналуы (локализациясы), не уақыттың шексіз өсуі кезіндегі 

өзгерісі және т.б. қасиеттерін іздене отырып, есепке бағалаулар алуға немесе шешімнің жалпы өзгеру 

сипатын көруге болады. Ұсынылып отырған жұмыста сығылмайтын тұтқыр серпімді сұйықтың 

ағынын сипаттайтын сызықты Кельвин-Фойгт (Осколков) теңдеулер жүйесі үшін уақыттан тәуелді оң 

жағының коэффициентін анықтау кері есебі қарастырылған. Бұл есептің әлді және әлсіз шешімдерінің 

бар болуы мен жалғыздығы туралы нәтижелер толыққанды зерттелінді. Бұл мақалада әлді және әлсіз 

шешімдерінің бар болуы мен жалғыздығы туралы нәтижелерге сүйене отырып, аталмыш кері есептің 

жалпылама әлсіз шешімінің асимптотикалық қасиеті, нақтырақ айтқанда, экспоненциалды кемуі 

көрсетіледі.  

Түйін сөздер: жады мүшесі бар Кельвин-Фойгт жүйесі, әлсіз шешім, шешімнің экспоненциалды 

кемуі. 
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ЭКСПОНЕНЦИАЛЬНОЕ ЗАТУХАНИЕ  

РЕШЕНИЯ УРАВНЕНИЯ КЕЛЬВИНА-ФОЙТА С ПАМЯТЬЮ 

 

Аннотация 

Помимо изучения корректности задач математической физики, то есть существования, 

единственности и устойчивости решений, важно также исследовать качественные свойства слабых 

решений. В целом, доказать глобальное существование и единственность решений прямых и обратных 

задач для нелинейных уравнений и систем уравнений математической физики и гидродинамики 

непросто, поскольку не существует универсальных методов решения нелинейных задач. Однако 

изучение некоторых качественных свойств решений, таких как разрушение решения за конечное 

время, локализация решений или изменение решения при бесконечном времени роста и т. п., может 

дать представление о характере общего изменения оценок или решений. В предлагаемой работе 

рассматривается обратная задача определения коэффициента правой части в зависимости от времени 

для системы линейных уравнений Кельвина-Фойгта (Осколкова), описывающей течение несжимаемой 

вязкоупругой жидкости. Результаты о существовании и единственности сильных и слабых решений 

этой задачи были получены и тщательно исследованы. В данной статье на основе сущетсования 

единственности слабого и сильного решения показано асимптотическое свойство обобщенного 

слабого решения указанной обратной задачи, а именно экспоненциальное убывание. 

Ключевые слова: система Кельвин-Фойгта с памятью, слабое решение, экспоненциальное 

затухание. 
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EXPONENTIAL DECAY OF SOLUTION TO THE KELVIN-VOIGT  

EQUATION WITH MEMORY 

 

Abstract 

In addition to studying the correctness of problems in mathematical physics, that is, the existence, 

uniqueness, and stability of solutions, it is also important to study the qualitative properties of these solutions. 

In general, proving the global existence and uniqueness of solutions to direct and inverse problems for 

nonlinear equations and systems of equations in mathematical physics and hydrodynamics is not easy, since 

there are no universal methods for solving nonlinear problems. However, studying some qualitative properties 

of solutions, such as the blowup of a solution in finite time, localization of solutions, or a large time behaviour 

of solutions, etc., can provide an idea of the nature of the general change in estimates or solutions. In this paper, 

we consider the inverse problem of determining the coefficient of the right-hand side as a function of time for 

a system of linear Kelvin-Voigt (Oskolkov) equations describing the flow of an incompressible viscoelastic 

fluid. The results on the existence and uniqueness of strong and weak solutions to corresponding problem has 

been studied. In this article, based on the results of the mentioned work, an asymptotic property of the 

generalized weak solution of the indicated inverse problem is shown, namely, exponential decay. 

Keywords: Kelvin-Voigt system with memory term, weak solution, exponential decay. 

 

1 Негізгі ережелер 

Бұл мақалада сығылмайтын тұтқыр серпімді сұйықтың қозғалысын сипаттайтын сызықты 

интегро-дифференциалдық Кельвин-Фойгт жүйесі үшін коэффициентті кері есеп 

қарастырылды. Аталмыш кері есептің жалпылама әлсіз шешімінің экспоненциалды кемуі 

қасиеті зерттелінді.  

Қарастырылып отырған кері есептің жалпылама әлсіз шешімінің экспоненциалды кемуі 

туралы интегралдық мүше болғанда ( 0)( tK ) 1-теорема, болмағанда ( 0)( =tK ) 2-теорема 

алынды. Теоремалар математикалық қатаң тілде дәлелденді. 

 

2 Кіріспе 

Айталық, 2,  ddR  шенелген облыс және оның   жатық шекарасы болсын. 

][0,= T
T

  бүйiр бетiмен анықталған 0>],[0,= TTQ
T

  цилиндрiнде ))(),,(),,(( tftptv xx


 

функциялар үштiгiн анықтауға арналған, сығылмайтын тұтқыр серпiмдi сұйықтардың ағынын 

сипаттайтын 
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жады мүшесі бар Кельвин-Фойгт теңдеулер жүйесiн, 
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сығылмайтын сұйық теңдеуiн, 
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сырғанау шекаралық шартын және 
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                                               (5) 

 

қосымша шартты қанағаттандыратын керi есептi қарастырайық, мұндағы 

−),...,,(=),(
21 d

uuutv x


сұйықтың жылдамдығы мен −),( tp x сұйықтың қысымы, ал   оң саны 

сұйықтың кинематикалық тұтқырлығы. )()(:=),( xx 


tftF  және )()(:)( xxx 


−=  вектор 

функциясы сыртқы күштердiң тығыздығын, ал )(tf  сыртқы күштердiң интенсивтiлiгiн 

сипаттайды. Сондай-ақ, )(
0

xv


, )(x


, )(th , )(tK  белгiлi функциялар. (1)-(2) теңдеулер жүйесі 

Кельвин-Фойгт немесе Осколков жүйесі деп атайды. Бұл теңдеулер жүйесі сығылмайтын 

тұтқыр серпімді сұйықтың ағынын сипаттайды. Аталмыш теңдеулер жүйесінің физикалық 

негіздемелері туралы мәліметтерді Павловский, Осколков, Звягин, Турвин [2-4] секілді 

ғалымдардың жұмысынан көруге болады. 

Жалпы жағдайда, математикалық физиканың және гидродинамиканың сызықты және 

сызықты емес теңдеулері мен теңдеулер жүйесі үшін қойылған тура және кері есептерінің 

шешімінің глобалды бар болуы мен жалғыздығын дәлелдеу оңайға соқпайды, себебі сызықты 

емес есептерді шешудің бірыңғай әдістері жоқ. Алайда, шешімнің кейбір сапалық қасиеттерін 

зерттей отырып, мәселен, ақырлы уақыттағы шешімнің қирауы (шешімнің глобалды 

шешілмеуі) немесе нөлге айналуы (локализациясы), немесе уақыттың шексіз өсуі кезіндегі 

өзгерісі және т.б. қасиеттерін зерттей отырып, есепке бағалаулар немесе шешімнің жалпы 

өзгеру сипатын көруге болады. Бұл жұмыс үшінші автордың Хомпыш және Кабидолдановмен 

бірге бұған дейінгі жарық көрген [5] жұмысының жалғасы болып табылады. Себебі бұл 

мақалада сығылмайтын тұтқыр серпімді сұйықтың ағынын сипаттайтын сызықты Кельвин-

Фойгт (Осколков) теңдеулер жүйесі үшін уақыттан тәуелді оң жағының коэффициентін 

анықтау кері есебінің жалпылама әлсіз шешімінің асимптотикалық қасиеті, нақтырақ 

айтқанда, экспоненциалды кемуі көрсетіледі. Бұл есептің әлді және әлсіз шешімдерінің бар 

болу және жалғыздығы туралы нәтижелер [5] жұмыста алынған.  

Сызықты және сызықты емес Кельвин-Фойгт теңдеулер жүйесі үшін қойылған оң жағының 

коэффициентін анықтау кері есептерінің әлсіз және әлді шешімдерінің бар болуы мен 

жалғыздығы [5-8] жұмыстарда қарастырылған. Сондай-ақ, жалпылама модификацияланған 

Кельвин-Фойгт теңдеулер жүйесі әлсіз және әлді шешімдерінің ақырлы уақытта қирауы, 

дәрежелік және экспоненциалды кемуі секілді асимптотикалық қасиеттері тура есептер үшін 

жеткілікті дәрежеде Хомпыш, Юшков, Мессауди секілді авторлардың [9,10] жұмыстарында 

зерттелінді.  

(1)-(5) кері есебінің әлсіз шешімінің экспоненциалды кемуі )(tK  функциясының нөлге тең 

және нөлден өзгеше болғанда дәлелденеді. Егер )(tK  функциясы нөлге тең болса, онда әлсіз 

шешімнің экспоненциалды кемуі [11,12] жұмыстардағыдай оңай дәлелдеуге болады. Ал, )(tK  

функциясы нөлден өзгеше жағдайда әлсіз шешімнің экспоненциалды кемуін дәлелдеу оңайға 

соқпайды әрі жаңа талпыныстарды қажет етеді.  

 

3 Зерттеу әдіснамасы 

Бұл мақаладағы алынған нәтижелер теориялық зерттеудің жемісі болып табылады. 

Сонымен қатар, арнайы лабораторияларда жүзеге асырылатын эксперименттік зерттеулер мен 

талдаулар жүргізілмегенін авторлар ұжымы хабарлайды. Зерттеу барысында дербес 

туындылы дифференциалдық теңдеулері, Навье-Стокс жүйесі және онымен байланысты 

гидродинамиканың теңдеулері үшін қойылған сызықты және сызықты емес есептерді 

математикалық тұрғыдан ізденуде пайдаланылатын заманауи және классикалық әдістердің 

тиімді комбинациясы қолданылды. Мысалға айтар болсақ, энергетикалық функциялар әдісі, 

енгізу теоремалары және т.б.  
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Функционалдық теңсіздіктер  

Сұйық механикасынан белгiлi келесi функционалдық кеңiстiктердiң анықтамасын берейiк 
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 =:V   )(2 L  нормасы бойынша   тұйықталуы ;  

 :=H   )(1

2 W  нормасы бойынша    тұйықталуы . 

1-анықтама. (1)-(5) керi есебiнiң әлсiз шешiмi деп  
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бастапқы шартты;  

3. барлық )(0,Tt   үшiн (5) қосымша шартты; 

4. Кез келген H  және барлық )(0,Tt   үшiн төмендегi интегралдық тепе-теңдiктi 
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 функциялар жұбын атайды. 

Айталық, (1)-(5) керi есебiнiң берілгендеі келесі шарттарды қанағаттандырсын 
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(1)-(5) есебінің әлсіз шешімінің бар болуы мен жалғыздығы [5] жұмыста дәлелденді.  

0)( tK  кезде экспоненциалды кемуі 

Ең алдымен 0)( tK  жағдайда, (1)-(5) есебінің әлсіз шешімінің экспоненциалды кемуін 

көрсетейік. Олай болса, (1) өрнекті v
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энергетикалық теңдігін алуға болады, мұндағы  
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4 Зерттеу нәтижелері 

Бұл мақаладағы зерттеу теориялық сипат алатынын ескерте отырып, авторлар ұжымы 

ізденудің нәтижесі ретінде екі теорема алды. Оның алғашқы теоремада сызықты интегро-

дифференциалдық Кельвин-Фойгт жүйесі үшін коэффициентті кері есептің әлсіз шешімінің 

экспоненциалды кемуі дәлелденді, екінші теоремада сызықты Кельвин-Фойгт жүйесі үшін 
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нәтижелер Қазақ ұлттық университетінің механика математика факультеті 

«дифференциалдық теңдеулер мен басқару теориясы» лабораториясының жас ғалымдар мен 

ғылыми қызметкерлері арасында талқыланып, апробациядан өткізілді. 
 

5 Дискуссия 

Бұл жұмыстағы негізгі зерттеу нысаны сызықты интегро-дифференциалдық Кельвин-

Фойгт жүйесі үшін коэффициентті кері есеп болып табылады. Ал кері есептер теориясындағы 
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негізгі қиындық, олардың табиғатынан қисынды қойылмауы болып табылады. Оларды 

шешімділікке зерттеу айтарлық қиындық туыдарары сөзсіз. Демек, шешімділік зерттеу мүмкін 

болмаған жағдайда, ең болмағанда олардың шешімдерінің асимптотикалық қасиеттері туралы 

ақпарат алу құнды нәтиже екенін аңғаруға болады. Сондықтан мақалада алынған нәтижелер 

сандық шешімдерді ізденуде, практикада көп көмегін тигізеді. 

 

6 Қорытынды 

Бұл жұмыста сығылмайтын тұтқыр серпімді сұйықтың қозғалысын сипаттайтын жады 

мүшесі бар (интегро-дифференциалдық) сызықты Кельвин-Фойгт жүйесі үшін уақыттан 

тәуелді оң жағының коэффициентін анықтау кері есебінің әлсіз шешімінің экспоненциалды 

кемуі дәлелденді. Дәлелдеу барысында алгебралық теңсіздіктер мен функционалдық 

анализдің енгізу теоремалары қолданылды. Шешімнің экспоненциалды кемуі энергетикалық 

әдіс арқылы алынды, ал алынған нәтиже жаңа болып табылады.  

 

7 Алғыс  

Бұл зерттеуді Қазақстан Республикасы Ғылым және жоғары білім министрлігінің Ғылым 

комитетінің №AP19676624 гранты қаржыландырды. 
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