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MATHEMATICAL MODELING AND DATA PROCESSING IN PYTHON

Abstract

The advent of mathematical modeling has significantly impacted various aspects of people's lives and has
contributed to advancements in civilization and the exploration of new frontiers. Scientific modeling is a
fundamental component of modern research, offering a method for both qualitative and quantitative
representation of processes, phenomena, or objects through numerical models. These models are developed
using mathematical tools that effectively capture the essence of the real-world processes, phenomena, or
objects being studied. A thorough examination of the history and application scope of mathematical modeling
reveals its profound influence in simplifying human life and addressing pressing challenges faced by humanity.
This includes an exploration of both the benefits and limitations associated with scientific modeling.
Additionally, this study delves into the utilization of computer programs, particularly Python, for simulating
physical phenomena. This work encompasses various aspects of scientific modeling, ranging from its historical
origins to the classification of numerical modeling techniques and models. Practical experiments on modeling
free harmonic motions, such as second-order thermal conductivity, using Python's scientific packages with the
capability to manipulate input data are also presented. Through these endeavors, valuable insights into the
intricacies of mathematical modeling and its practical applications are gained.

Keywords: python, computer mathematics programs, mathematical apparatus, mathematical model,
mathematical modeling, heat equation, sweep method, fractional steps method, data processing.
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Anoamna

MareMaTHKaJbIK MOAENBIACYAIH Maiiaa Oomybl agaMaap eMipiHiH opTYpili acHeKTiiepiHe arTapibIKTai
acep eTTi KoHE OPKEHUETTIH JJaMybIHA JKOHE JKaHa [IieKapaliap/IbIH JaMybIHa yiiec KOCcThl. FBUIbIMU MoJIebIey
CaHIBIK MOJEIBIEP apKbUIbl MPOLECTEpi, KYObUIBICTApAbl HeMece OOBEKTUIepl camaibl JKOHE CaHIBIK
OeliHeney oficiH YCBIHATBIH 3aMaHayHW 3epTTeyJepAiH Herisri Kypamaac Oesiri Oomibin Tadbutambl. by
MOJIEIbICP 3ePTTEICTIH MPOICCTEP/IiH, KYOBLIBICTAPIbIH HEMECE HAKThI JIeM O0BbEKTUICPiHIH MOHIH THIMII
KOpPCETeTiH MaTeMaTHUKANBIK Kypaiap/ibl KOJJaHy apKbLIbl jKacalajabl. MaTeMaTHKaJblK MOJENbACY iH
TapyuXxbl MEH KOJJAHbUTY asCBIH MYKHUAT 3€pTTEY OHBIH a/1aM OMIpiH XKEHUIETYTe oHe ajgaM3aT allAbIHIa
TypraH ©3eKTiI MaceJeliepil IICHIyre TEPeH ocepiH KepceTeldi. By FeIIBIMH MOJCNbICYre OaitlaHBICThI
apTHIKIIBUIBIKTAp MEH IeKTeylepiai 3epTreydi KamTtuisl. COHBIMEH Karap, Oyl 3epTTey (U3UKAIIBIK
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KYOBUTBICTapAbl MOJENBJCY YIIIH KOMIIBIOTEpINIK MporpaMManapisl, atan adTkanga Python -. xommanyra
OarpITTanFaH. by JKyMBIC FBUTBIMA MOJENBACYIIH OPTYpPJl acmeKTUIepiH KaMTHIBI, OHBIH TapuXu
OactaymapblHaH OacTam caHIBIK MOJENbACY oficTepi MeH MoJenbAepiH xikreyre aedin. Kipicrepai
MaHHUIyJSHsAIay MYMKiHAiri Oap Python FeUIBIME MakeTTepiH KoJJaHa OTBIPBIN, EKiHIII PETTi KBLIY
OTKI3TIITIK CHAKTHl €pPKiH TapMOHHMKANBIK KO3FANBICTAPIbl MOJENbIEYre apHaJIFaH MPaKTHKAIBIK
HKCTIEPUMEHTTED e YChIHBIIFaH. OChI KYII-KITep/iH apKachlH/Ia MaTeMaTHKAJIBIK MOJICIBACYIIH KbIP-CHIPHI
YKOHE OHBIH MPAKTHKAJIBIK KOJAAHBLTYBI TYpajbl KYHABI akmapaT aiyFa Oomazpl.

Tyiiin ce3nep: python, KOMIBIOTEpIIK MaTeMaTHKAJBIK MporpamMmalap, MaTeMaTHKaIbIK almapar,
MaTEeMaTHKAIIBIK MO/JIENIb, MATEMATHKAIBIK MOJIENbILY, KbUTY OTKI3TIIITIK TeHJeYl, CHITBIPY 9ici, Oemek
KaJlaM 9JIici, IEPEKTEePl OHJIeY.
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AnHomayus

[TosiBneHne MaTeMaTUYECKOTO MOJCTUPOBAHMS CYIICCTBEHHO TOBIUSIO HAa Pa3IUYHBIC ACTICKTHI KU3HU
JIOJEH W BHECIO CBOW BKJIAJ B pa3BUTHE IMBWIW3AllMM W OCBOCHHE HOBBIX pyOexkei. HayuHoe
MOJIETTPOBaHUE SIBIIETCS (yHIaMEHTaIbHBIM KOMIIOHEHTOM COBPEMEHHBIX UCCIIEIOBAHUH, TIPeIIarast METO.T
KaK KaueCTBEHHOTO, TaK M KOJIMYECTBEHHOTO MTPE/ICTABIICHHUS IPOIIECCOB, SBICHUN HITH OOBEKTOB C TIOMOIIBIO
YUCICHHBIX MOJIECH. DT MOl pa3pabaThIBAIOTCS C UCIOJIh30BAHHEM MATEMaTHYECKHX MHCTPYMEHTOB,
KOTOpBIe YP(HEKTUBHO OTPAKAIOT CYTh M3y4aeMBIX IIPOIIECCOB, SBICHUI WM OOBEKTOB PEANLHOTO MHUpA.
TrarenpHOE M3y4YeHNE UCTOPUU U Cepbl TPUMEHEHUS] MAaTEMATHYECKOTO MOJIEIMPOBAHHUS ITOKA3hIBAET €ro
NIyOOKOEe BIMSHUE Ha YIPOIICHHE >XU3HU 4YEJOBEKa M PEIICHUE HACYIIHBIX MPOoOJIeM, ¢ KOTOPBIMHU
CTAJIKMBAETCS YEIOBEYECTBO. JTO BKIIIOYACT B CEOs M3ydYCHHE KaK MPEHMYILNECTB, TaK M OTPAHHYCHUIA,
CBSI3aHHBIX C HAYYHBIM MOJEIHpoBaHWeM. Kpome TOro, 3TO HCCiemnoBaHHE MOCBAIIEHO HCIIOIB30BAHUIO
KOMITBIOTEPHBIX TIPOTpaMM, B dacTHOCTH Python, mms momenupoBanus (usndeckux sBIeHuiA. Jta pabora
OXBaThIBACT PA3JIMYHBIE ACTEKThl HAYYHOTO MOJCIMPOBAHUS, HAUMHAS C €r0 MCTOPHUYECKUX HCTOKOB H
3aKaHuYMBas Kiaccu(ukanyued MeTOJOB M MOJEJNeil YHCIEHHOrO MOJENHPOBaHUsA. Takke MpeiCcTaBlIeHBI
MPAKTUYECKHE SKCIIEPUMEHTHI 110 MOAETHUPOBAHUIO CBOOOJHBIX TapMOHHYECKUX JBIDKEHUH, TaKMX Kak
TEIUTONPOBOIHOCTE BTOPOTO TMOPSAAKA, C HCIOJB30BAHWEM HAydHBIX MakeToB Python ¢ Bo3MoxHOCTBIO
MaHUTYJIMPOBAHHS BXOAHBIMHU JaHHBIMU. braronaps 3TUM yCHIIHSAM MOXHO TIOJTYYHTh [IEHHYIO HH()OPMAITUIO
0 TOHKOCTSIX MaTEMATHYECKOTO MOJICTUPOBAHHS U €T0 MPAKTUIECKOM IPUMEHEHHH.

KiroueBble ciioBa: Python, KOMIBIOTEPHBIE MaTeMaTHYeCKHUe MPOrpaMMbl, MaTEMAaTHUYECKUI armapar,
MaTeMaThdeckas MOJeNh, MAaTeMaTUYeCKOe MOCIMPOBAaHUE, YPAaBHEHHE TEIUIOMPOBOJHOCTH, METOT
pa3BepTKH, METOJT APOOHBIX MIAroB, 00padOTKA JaHHBIX.

Main provisions

In this study, two numerical methods - specifically the tridiagonal matrix method (a variant of the
sweep method) and the fractional steps method - were evaluated for their efficiency in solving a heat
equation represented by a partial differential equation. The research demonstrated that the fractional
steps method required significantly fewer iterations (98 iterations) compared to the tridiagonal matrix
method (2571 iterations) to achieve convergence. Therefore, it concluded that the fractional steps
method is faster and more efficient, making it a preferable choice for numerical simulations,
especially when computational efficiency is a priority. Additionally, the study calls for further
refinement and integration of advanced techniques, such as machine learning, with the fractional steps
method to improve its performance.

Introduction
The emergence of mathematical modeling during the 20th century was a significant discovery that
revolutionized various fields. The understanding of mathematical modeling began to take shape in

138




Abaii amvinoazer Kaz¥I1Y-uiy XABAPIIBICHI, « Dusuka-mamemamura evlaimoapsly cepusicol, Ned(88), 2024

the late 19th and early 20th centuries, with the works of mathematicians R. Fréchet and D. Hilbert.
They introduced new perspectives on proximity in mathematics, such as metric and Hilbert spaces,
which laid the foundations for modern mathematical modeling.

These developments led to the formation of new methods in computational mathematics and
provided the necessary theoretical groundwork for mathematical modeling. One of the key
contributions was the concept of integral identities in mathematical physics, as well as the finite
element approach proposed by R. Courant. The finite element method became the basis for variational
and projection difference methods used to solve problems in mathematical physics.

Russian scientists A.A. Samarsky and O.M. Belotserkovsky played a significant role in advancing
the idea of mathematical modeling. Their contributions helped shape the field and further enhance
the effectiveness of mathematical models.

Mathematical modeling has had a profound impact on civilization, contributing to the
achievements of various disciplines. It has played a fundamental role in the revolution of physics in
the 19th and 20th centuries, allowing for a deeper understanding of natural phenomena and facilitating
technological advancements. It is important to note that mathematical modeling has made a huge
contribution to the achievements of civilization, as well as the revolution in physics in the 19th and
20th centuries [1].

There are instances where possessing an object is feasible, yet its utilization could incur significant
expenses or even result in grave calamities. In such scenarios, the researcher's objective is to
formulate a model of the original object, thus foreseeing the characteristics and conduct of the object
during its application.

The development of an accurate model necessitates a profound understanding of the object slated
for modeling. Occasionally, it is contended that a mathematician devoid of familiarity with the object
in question can create a model, as can a specialist well-versed in the object but lacking mathematical
comprehension. However, it remains crucial to recognize that proficiency in mathematical modeling
demands expertise not solely in mathematical models but also in the object being modeled. Moreover,
it is important to remember that to achieve success in mathematical modeling, you need to have
knowledge not Mathematical modeling encompasses the process of devising and analyzing
mathematical models that encapsulate real-world processes and phenomena using mathematical
modeling programs or packages. Furthermore, mathematical modeling constitutes an indispensable
component of scientific and technological advancement [2].

Contemporary mathematics boasts an extensive array of powerful research tools. When
constructing a model, the pertinent parameters and details of the subject under examination are
incorporated, which some believe contain the requisite information about the object, while others
view them as facilitating mathematical formalization. Understanding the method of mathematical
modeling is imperative to comprehend the modeling process. But it is also necessary to understand
what a mathematical modeling method is in order to understand how modeling is carried out [3].

Mathematical model that reflects knowledge in the proposed field of software [4].

Related to the field of engineering knowledge or various sections of artificial intelligence as a
scientific discipline [5].

A mathematical model is a reflection of expertise in the respective domain of software. It pertains
to the realm of engineering knowledge or various branches of artificial intelligence as a scientific
discipline. Emphasis is placed on the recommendation to conduct modeling not solely through
laborious programming efforts but rather by transforming modern insights into a format conducive to
human comprehension.

It is emphasized that it is advisable to carry out not due to time-consuming programming, but due
to the introduction of modern data of revelation into a form convenient for a person [6].

Research methodology
Materials and research methodologies: Various methods can be employed for mathematical
modeling of physical phenomena, such as the sweep method, explicit method, fractional step method,
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Jacobi method, Gauss-Seidel method, among others. In this article, we will delve into two methods
for solving a single physical equation and compare their efficacy. Gauss-Seidel method, and so on.
In the same article we will touch on two methods for one physical equation and compare them [7].

ou 0%u N 0%u "
ot  0x2  0y? 1)

where u(x,y,t) — function, a d — partial differential.

Tridiagonal matrix method:

Tridiagonal matrix method: This method is a variant of the sequential elimination method for
solving unknowns. The sweep method, a special case of the Gauss method, is utilized to solve systems
of linear equations represented by Ax = B, where A is a tridiagonal matrix. A tridiagonal matrix is
characterized by zeros in all positions except the main diagonal and its adjacent elements. The sweep
method comprises two stages: forward sweep and backward sweep. During the first stage, the running
coefficients are determined, while the unknown variables x are computed during the second stage. At
each stage, the latest calculated values of the values are used [8].

Let's discretize the aforementioned equation:

un+1 _n n+1 __ Zuln+1 + un+1

i U Ujpq i-1
= 2
At Ax? ©)

where i —is a sweep across the plate and 0((4x?), (At)) — approximation error.

Python is one of the most widely used programming languages, and according to the PYPL
(popularity of programming languages) index, it is the most popular in the world [9]. At the same
time, Python has all the functionality of other languages and even more [10]. Derivation of this
formula in program code. Below is the output of the formula in the program code in Figure 1.

(maxizeps):

J range (n) :

newp[0] [31=1

newp[n-11[71=1

i range(n) :

newp[1i] [0]=0

newp[i] [n-1]=0

i range (1,n-1):
j range(l,n-1):
newp[i] [1]=oldp[i] [1]+dt* ((oldp[i+1][{]-2%cldp[i] [1]1+oldp[i-1]1131)/(dx*2)+(oldp[i][{+1]-2%cldp[i][j]+oldp[i][]-11)/ (dy*2))

maxi=0

Figure 1. Re-check data by the loop

In this context, a while loop is employed to re-evaluate the maximum value data with an error
threshold, typically set at 0.00001 for our purposes.

Figure 2 following this, a for loop is utilized to track the final iteration, determining the total
number of completed iterations.

i range (1l,n):
i range (1l,n):
(maxi<abs (newp[i] []]1-oldp[i][]1)):
maxi=abs (newp[i] [J]1-0ldp[i] [J])
i range (n) :
] range (n) :
oldp[il [J]=newp[i] []]
iter+=1
Figure 2. Count of iterations
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Transitioning to the second method, we delve into the fractional steps approach. In this method,
also known as splitting schemes, the progression to the subsequent time layer is fragmented into
multiple intermediate stages. At each of these individual stages, there's no necessity to ensure both
approximation and stability. However, the collective result of these stages yields a full-step
approximation, enabling the construction of a convergent and cost-effective scheme. Presently,
fractional steps methodology stands as an indispensable component in formulating frameworks to
address intricate multidimensional challenges in mathematical physics.

The following steps will be used for our equation:

Step 1.
1
n+s
uij - Z 1 7’l+1 n n
A—t = E (Alu 2 + Alu ) + Azu (3)
Step 2.
+1/2
u{;-'-l B uz / n+1 n
= 5 (AU — ™) @
where operators A,u A, are equal to:
2
h=55 (5)
62
Ay = a_yz (6)

Figure 3 these formulas in Python are specified as follows.

(maxx>eps) :
i range(l,n):
bettal[1]=newp[0][]]
alphal[l]=0
i range(1,n):
i range (1,n):
dl=oldp[j][i]/dt+(oldp[j] [i+1]-2%0ldp[]] [1]+oldp[3][i-1])/(2*(dx*2))+(oldp[i+1][i]-2*0ldp[i][i]+oldp[]-1][i])/ (dy*2)
i range (1,n) :
alphal[itl]=-al/(bltcl*alphall[i])
bettal[it+1]=(dl-cl*bettal[i])/(bl+cl*alphalli])
i range (n-1,0,-1):
newp[i] [j1=newp[i+1] [j]*alphal[i+1]+bettal[i+]]
] range(1,n):
alpha2[1]=0
betta2[1]1=0
] range(1l,n):
i range(1,n):
d2=newp[i] []/dt+(oldp[j+1] [1]-2%0ldp[]][i]1+oldp[J-11[i])/ (2% (dy**2))
i range(1,n):
alpha2[i+1]=-a2/ (b2+c2%alpha2[i])
betta2[i+1]=(d2-c2*betta2[i])/ (b2+c2*alpha2[i])
i range (n-1,0,-1):
newp[j][1]=newp[]] [i+1]*alpha2[i+1]+betta2[i+1]
maxx=0

Figure 3. Re-check data by steps

This employs a loop to iterate over the variables of the x and y axes in two steps. Figure 4 the
number of iterations can be tracked similarly to the first method, using a for loop to monitor the
progress.
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for i in range(0,n+1):
for § in range(0,n+l):
f maxx<abs (newp[i] [J]-oldp[i]l[]j]):
maxx=abs (newp[i] [J]1-0ldp[i][3])
for i in range(0,n+1):

h

or j in range (0,n+1):
oldp[i] [JI=newp[il[]]
iterr=iterr+1

Figure 4. Count of iterations

Results of the study
Figure 5 the outcome of applying the tridiagonal matrix method to the heat equation yields the
following graph and associated data:

2571
[[a. 1. 1. ... 1. 1. o. 1
[@. 0.49008006 ©.69761004 ... 0.60761084 0.40908005 0. 1
[@. @.30231837 ©.49992056 ... 0.40092056 @.30231037 8. ]
[@. @.30231837 ©.49992056 ... 0.40092056 @.30231037 8. ]
[e. 0.49098006 ©.69761084 ... 0.60761884 0.49998005 @. ]
[e. 1. 1 .. 1. 1. a. 1]

o 10
10 0.8
0 06
0 0.4
40 02
S0 ¥ T T 0.0

0 10 20 0 an 50

Figure 5. Results from tridiagonal matrix method

Figure 6 we have generated a graph illustrating the thermal conductivity distribution across the
plate, along with a tridiagonal data matrix. Solving this problem required 2571 iteration.

98 =
0.0 0.0 1.0

0.0 0.1111111111111111 0.0

0.0 0.2222222222222222 0.0

0.0 ©.3333333333333333 0.0

0.0 0.4444444444424044 0.0

0.0 @.5555555555555556 0.0

0.0 @.6666666666666666 0.0

0.0 0.77777777TTTTTITT 0.0

0.0 0.8888888888838888 0.0

0.0 1.0 0.0

©.1111111111111111 0.0 1.0

©.1111111111111111 ©.1111111111111111 0.03072442962858342

9.111111111111211111 ©.2222222222222222 9.03187715619905351

©.1111111111111111 ©.3333333333333333 0.03192039801948008

©.1111111111111111 0.4444444444444442 0.03192202050763673

©.1111111111111111 0.5555555555555556 0.031922079099495146

©.1111111111111111 0. 6666666666666666 0.03192202050763672

©.1111111111212111 0.77777777777T7777 0.03192039801948007 .

Figure 6. Results from fractional step method

Figure 7 applications of the fractional step method.
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1.0 0.6666666666666666 0.009196262384170985
1.0 0.7777777777777777 0.009195794969309192
1.0 0.8888888888888888 0.009183335911335846
1.0

1.0 0.008851254149180676

Figure 7. Results from fractional step method

Based on the outcomes derived from this approach, we observe the dispersion of heat across the
plate, with data indicating that as time progresses, the heat dispersion also intensifies. Upon
segmenting the task into steps, we achieve the desired outcome within 98 iterations.

Discussion

The results of this study have significant implications for computational efficiency in numerical
simulations across various domains, including engineering and physics. The ability of the fractional
steps method to converge in significantly fewer iterations suggests that it can effectively streamline
the processes involved in simulating physical phenomena. This finding aligns with previous research
that has emphasized the importance of optimizing numerical methods for enhanced performance,
particularly as the complexity of problems increases. The observed superiority of the fractional steps
method mirrors trends in the field of computational science that favor methods capable of reducing
computational load without sacrificing accuracy. By adopting the fractional steps method, researchers
can allocate their computational resources more effectively, addressing larger and more intricate
problems in a reasonable timeframe. Future research prospects include exploring the potential of
hybrid approaches that combine classical numerical methods with modern techniques, such as
machine learning, to further enhance the efficiency and adaptability of numerical simulations. This
integration could lead to even faster convergence rates and improved predictive capabilities, thus
setting the stage for innovative solutions to complex scientific challenges. Overall, this study
contributes valuable insights into the ongoing discourse on numerical methods' optimization and their
critical role in advancing scientific research.

Conclusion

In conclusion, based on these findings, it can be inferred that the fractional steps method proves
significantly faster and more efficient compared to the sweep method. This is evident from the fact
that the number of iterations required for the former is 26 times fewer, despite the potentially larger
code involved. The goal of the study was to compare the efficiency of the fractional steps method
with the sweep method in numerical simulations. To achieve this, the researcher conducted practical
experiments using both methods and analyzed their performance in terms of computational speed and
efficiency. The methods involved developing mathematical models, implementing algorithms, and
running simulations using appropriate computational tools. The results of the study showed that the
fractional steps method outperformed the sweep method in terms of computational efficiency.
Specifically, the fractional steps method required significantly fewer iterations to converge compared
to the sweep method, despite potentially involving larger code. This indicates that the fractional steps
method is faster and more efficient for numerical simulations of the physical phenomena studied.
Based on these findings, it can be concluded that the fractional steps method is a preferable choice
for numerical simulations when computational efficiency is a priority. Its ability to achieve
convergence with fewer iterations can lead to significant time savings in computational tasks.
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Additionally, the study highlights the importance of considering different numerical methods and
their implications for computational performance in scientific modeling. The findings of this study
have implications for various fields where numerical simulations are employed, such as engineering,
physics, and computational science. The implementation of the fractional steps method can lead to
faster and more efficient simulations, enabling researchers and practitioners to tackle larger and more
complex problems within a reasonable computational time frame. Furthermore, future research could
explore optimizations and refinements of the fractional steps method to further enhance its
performance and applicability in real-world scenarios.

Future work could also investigate the integration of machine learning techniques with the
fractional steps method to enhance model predictions and convergence rates. Overall, these
advancements could pave the way for more innovative approaches in scientific computing, ensuring
that researchers can keep pace with the growing demands for computational power and efficiency.
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