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Abstract 

In this article we present concrete results on both the countable and uncountable categoricity of some 

fragments. Our research on the categoricity of these fragments is conducted within the extended framework of 

normal Jonsson theory. The fragments are derived through the application of the closure operator of a specified 

pregeometry, and the involved sets are regular. The resulting models in this context constitute the Kaiser class 

associated with a studied Jonsson theory. These models exhibit distinct and interesting structural properties, 

making them a subject of extensive study. Furthermore, we analyze how variations in the underlying 

pregeometry influence the classification of fragments. Such an approach makes it possible to identify broader 

and deeper connections between categoricity and model-theoretic stability, thereby significantly expanding 

and refining the understanding of their interrelation in the context of contemporary fundamental scientific 

research. 
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КАЙЗЕР КЛАСЫ ҮШІН ӘЛБЕТТІЛІК (КАТЕГОРЛЫЛЫҚ) ҚАСИЕТТЕРІ 

 

Аңдатпа 

Бұл мақалада біз белгілі бір фрагменттердің саналатын және саналмайтын әлбеттілігі бойынша 

нақты нәтижелерді ұсынамыз. Бұл фрагменттердің әлбеттілігін зерттеу нормальді йонсондық 

теориясының кеңейтілген шеңберінде жүргізілді. Фрагменттер алғашқы геометрияның тұйықтама 

операторы арқылы алынады, ал қолданылған жиындар тұрақты болып табылады. Бұл жағдайда 

алынған модельдер зерттелген йонсондық теориясына сәйкес Кайзер класын құрайды. Бұл модельдер 

ерекше қызықты құрылымдық қасиеттерді көрсетеді және кеңінен зерттеу нысанына айналады. 

Сонымен қатар, негізгі алғашқы геометриядағы өзгерістердің фрагменттерді жіктеуге қалай әсер 

ететінін талдаймыз. Мұндай тәсіл әлбеттілік пен модельдік-теориялық тұрақтылық арасындағы 

анағұрлым кең әрі терең байланыстарды айқындауға мүмкіндік береді, осылайша олардың өзара 

қатынасын қазіргі іргелі ғылыми зерттеулер аясында едәуір кеңейтіп, тереңдетіп, нақтылай түседі. 

Түйін сөздер: йонсондық теория, семантикалық модель, йонсондық жиын, йонсондық дерлік жиын, 

қалыптылық, тұрақтылық. 
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СВОЙСТВА КАТЕГОРИЧНОСТИ ДЛЯ КЛАССА КАЙЗЕРА 

 

Аннотация 

В данной статье мы представляем конкретные результаты исследований о счетной и несчетной 

категоричности некоторых фрагментов. Изучение категоричности этих фрагментов проводится в 

расширенных рамках нормальной йонсоновской теории. Фрагменты получаются с использованием 

оператора замыкания заданной предгеометрии, а рассматриваемые множества являются регулярными. 

Полученные модели в данном случае образуют класс Кайзера, связанный с изучаемой йонсоновской 

теорией. Эти модели демонстрируют особые интересные структурные свойства, что делает их 

предметом активного изучения. Кроме того, мы анализируем, как изменения в базовой предгеометрии 

влияют на классификацию фрагментов. Подобный подход позволяет выявить более широкие и 
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глубокие связи между категоричностью и модельно-теоретической стабильностью, тем самым 

существенно расширяя и уточняя понимание их взаимосвязи в контексте современных 

фундаментальных научных исследований. 

Ключевые слова: йонсоновская теория, семантическая модель, йонсоновская множество, почти 

йонсоновская множество, нормальность, регулярность. 

 

Introduction  

The main results of the paper are given in the form of new theorems exploring the relationships 

between key properties of a perfect normal Jonsson theory 𝑀0, such as completeness, model 

completeness, ∀∃-axiomatizability, and the existence of a model companion. The focus is on how 

structures related to 𝑐𝑙(𝐴) ∈ 𝐾𝑇  and 𝑀0 ensure the equivalence of these fundamental properties 

within the framework of Jonsson theory. The results establish a profound connection between the 

fundamental properties of a perfect normal Jonsson theory 𝑀0. Specifically, it has been shown that 

the properties of completeness, model completeness, ∀∃-axiomatizability, and the existence of a 

model companion are all equivalent within the framework of Jonsson theory. Furthermore, the 

structures related to 𝑐𝑙(𝐴) ∈ 𝐾𝑇  and 𝑀0 play a crucial role in ensuring this equivalence. 

This article examines the model-theoretic characteristics of particular subsets within the semantic 

models of a given fixed normal Jonsson theory, with a primary focus on regular almost Jonsson sets. 

The foundational concepts of normality for Jonsson theories and almost Jonsson sets, first introduced 

in [1], serve as the basis for this investigation. Regularity is presented as a natural and essential 

requirement for definable sets to qualify as Jonsson sets. To enable effective analysis, the defining 

formula of a Jonsson set must satisfy established model-theoretic criteria. In this study, the property 

of regularity is axiomatically formulated, with the defining set characterized by a formula possessing 

a Morley rank. This approach integrates seamlessly with the broader framework of studying Jonsson 

theories in the context of Morley rank, as previously developed in [2]. 

Building on foundational works [1], [3], and [4], this article addresses the challenges posed by the 

general incompleteness of Jonsson theories. In the absence of a comprehensive analysis of the 

Lindenbaum-Tarski Boolean algebra of formulas and its associated Stone space of types, alternative 

methods are employed. Following the approaches of [3] and [4], this work examines the lattice of 

existential formulas and their corresponding existential types. Within this framework, significant 

results concerning the structure and properties of almost Jonsson sets are obtained. 

The key contribution of this study lies in the application of a new double factorization technique 

to the class of cosemanticness under consideration. This new approach sheds new light on the analysis 

of Jonsson theories and their related subsets, building on existing results and presenting a fresh 

perspective. 

 

Research Methodology 

1. Essential details regarding the study of Jonsson theories. 

To grasp the content and subtleties of our subsequent discussion, it is essential to revisit the 

key definitions and propositions linked to those presented in [1]. In this article, we work within 

a countable first-order language, and all the theories under consideration will likewise be 

countable. 

Before introducing the concept of Jonsson theories, we first recall the definitions of two key 

properties that play a crucial role in analyzing this class of incomplete theories. 

Definition 1.  

[5]. A theory 𝑇 has the joint embedding property (JEP), if, for any models 𝐴 and 𝐵 of 𝑇, there 

exists a model 𝑀 of 𝑇 and isomorphic embeddings 𝑓: 𝐴 → 𝑀, 𝑔: 𝐵 → 𝑀. 

Definition 2.  

[5]. A theory 𝑇 has the amalgamation property (AP), if for any models 𝐴, 𝐵1, 𝐵2 of 𝑇 and 

isomorphic embeddings 𝑓1: 𝐴 → 𝐵1, 𝑓2: 𝐴 → 𝐵2 there are 𝑀 ⊨ 𝑇 and isomorphic embeddings 

𝑔1: 𝐵1 → 𝑀,𝑔2: 𝐵2 → 𝑀, such that 𝑔1 ∘ 𝑓1 = 𝑔2 ∘ 𝑓2.  
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The primary focus of this article revolves around the concept of a Jonsson theory. 

Definition 3.  

[5]. A theory T is said to be a Jonsson theory if: 

(i) T has at least one infinite model; 

(ii) 𝑇 is an inductive theory, meaning it can be axiomatized by ∀∃-sentences; 

(iii) T has JEP (joint embedding property), i.e. any two models of 𝑇 can be combined into a larger 

model of T; 

(iv) T has AP (amalgamation property), i.e. guarantees that for any three models of 𝑇, where two 

extend the third, there exists a larger model into which both extensions can be embedded consistently. 

The study of Jonsson theory has been a subject of interest and recognition for many years. 

This framework, which captures the core methodologies and their applications in exploring 

various aspects of Jonsson theories, is detailed in the works [6]-[16]. 

The following definition introduces an important concept: an existentially closed model 

within the class of models of a Jonsson theory. When an existentially closed model is also 

algebraically simple, it gives rise to a particularly interesting class of Jonsson theories. This 

combination of properties contributes to the structural richness and definability of the theory, 

making it a key area of study in the model theory of Jonsson theories. 

Definition 4.  

[5]. Let 𝑀 be a structure and 𝑁 ⊇ 𝑀. A model 𝑀 of theory 𝑇 is existentially closed in 𝑁, if 

for any tuple 𝑎̅ ∈ 𝑀 and any quantifier-free formula 𝑓(𝑥̅, 𝑦̅) of language 𝑀, the following holds: 

if 𝑁 ⊨ (∃𝑦̅)𝑓(𝑎̅, 𝑦̅), then 𝑀 ⊨ (∃𝑦̅)𝑓(𝑎̅, 𝑦̅).  
This property reflects the closure of 𝑀 under existential quantification within the extension 𝑁.  

One of the syntactic invariants of a Jonsson theory is its center. This center serves as a key 

structural element in understanding the theory and its associated models, often reflecting 

important properties related to the theory’s definability and consistency. Let us give some 

definitions regarding the Jonsson theories. 

Definition 5.  

[17]. A model 𝐶𝑇 of the Jonsson theory 𝑇 such that |𝐶𝑇| = 2
𝜔 is said to be a semantic model, 

if it is 𝜔+-homogeneous-universal. 

Definition 6. 

 [18]. 𝑇∗ denotes the center of a Jonsson theory 𝑇. It is defined as the elementary 

theory corresponding to its semantic model 𝐶𝑇, meaning that 𝑇∗ is the complete theory that fully 

describes the model 𝐶𝑇. Formally, we can express this as: 𝑇∗ = 𝑇ℎ(𝐶𝑇), where 𝑇ℎ(𝐶𝑇) is the theory 

of the model 𝐶𝑇, consisting of all the sentences that are true in 𝐶𝑇.  

Definition 7.  

[5]. Let 𝑇 be an arbitrary theory of the language 𝐿. A theory 𝑇′ is called a model companion 

of 𝑇, if it satisfies the following conditions: 

(i) Mutual model-consistency: It means that any model of T is embedded in the model of T’ 

and vice versa; 

(ii) Model-completeness: 𝑇′ is model-complete, meaning that for any two models 𝐵1  and 𝐵2 

of 𝑇′, if 𝐵1  is a submodel of 𝐵2, then 𝐵1 is an elementary submodel of 𝐵2. In simpler terms, any 

embedding of one model into another is elementary, preserving the truth of all formulas.  

The concept of model completeness is intrinsically connected to the idea of mutual model 

consistency for the theory in question. 

Definition 8.  

[5]. Let 𝑇 be any theory. A theory 𝑇#, referred to as a #-companion of 𝑇, is a theory of the 

same signature if: 

(i) (𝑇#)∀ = 𝑇∀: The universal consequences of 𝑇# are identical to those of 𝑇; 

(ii) if 𝑇∀ = 𝑇∀
′ , then 𝑇# = (𝑇′)#: The #-companion is uniquely determined by the universal 

consequences of 𝑇; 
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(iii) 𝑇 ∀∃ ⊆ 𝑇
#. 

It is evident that a model companion is also a #-companion of 𝑇. This implies that the model 

companion satisfies the conditions required for a 𝑇#-companion, including: 

(i) Identical Universal Consequences: The universal consequences of 𝑇 and its model companion 

coincide, i.e., 𝑇′∀ = 𝑇∀. 

(ii) Inclusion of Existential Consequences: The model companion encompasses all the existential 

consequences of 𝑇, ensuring consistency with 𝑇 while extending its structure. 

This dual compatibility confirms that the model companion meets the broader requirements of 

a 𝑇#-companion. 

Remark 1. When we state that 𝑇′∀ = 𝑇∀, it means that every model of 𝑇 can be embedded as a 

substructure within a model of 𝑇′, and conversely, every model of 𝑇′ can be embedded as a 

substructure within a model of 𝑇. 

Moreover, 𝑇′ is a model companion of 𝑇 if and only if it is also a model companion of 𝑇∀.  

Proposition 1. [5]. Let a theory 𝑇 be an arbitrary theory. Then 𝑇 has a model companion if and 

only if the class of existentially closed models of 𝑇∀ is an elementary class, and if a model companion 

of 𝑇 exists, it is unique and is coincides with the theory of existentially closed models of 𝑇∀.  

Additionally, Robinson’s work demonstrates the concepts of finite forcing and the forcing #-

companion. Robinson's result in [19] shows that if a theory in a countable language satisfies JEP, 

then this theory has a forcing #-companion that is complete.  

The theorem below establishes that every Jonsson theory 𝑇 has a forcing #-companion, and 

that this companion is a complete theory. 

Theorem 1.  

[5]. If 𝑇 satisfies JEP, then the forcing #-companion 𝑇# will be complete.  

The theorem highlights that the simultaneous existence of all interpretations of the #-companion 

is intricately connected to the existence of a model companion. 

This means that if a model companion exists for T, the different interpretations or versions of the 

#-companion is closely tied to the existence of a model companion. In simpler terms, the existence 

of a model companion guarantees that the #-companion can be well-defined and consistent across 

different interpretations. 

In addition to the model companion, other types of companions are crucial in the analysis and 

understanding of Jonsson theories. These include the forcing companion, the existentially closed 

companion, and the Kaiser hull (the maximal ∀∃-theory that is mutually model-consistent with 

𝑇). The Kaiser hull is particularly notable for its close relationship with the companion that 

characterizes the class of models that are existentially closed with respect to the given theory. It 

is also related to the companion that defines the class of generic models when investigating the 

forcing companion of the theory. 

The natural interpretations of the #-companion 𝑇# include the following theories:  

(i) 𝑇∗ is the center of the Jonsson theory T,  

(ii) 𝑇𝑓 refers to the forcing companion of the Jonsson theory T,  

(iii) 𝑇𝑀 denotes the model companion of the theory T.  

(iv) 𝑇𝑒 = 𝑇ℎ(𝐸𝑇). 𝑇
𝑒 represents the existential closure companion, specifying the set of 

existentially closed models of 𝑇, with 𝐸𝑇 denoting the class of all existentially closed models within 

the theory 𝑇. 

If 𝐸𝑇 stands for the class of 𝑇-existentially closed models of an inductive theory 𝑇, then 𝐸𝑇 is 

guaranteed to be non-empty, as established in [18]. 

In the study of Jonsson theories, the class of perfect Jonsson theories holds a special 

significance. These theories are particularly important because they exhibit a high level of 

structural regularity and satisfy key conditions that make them central to understanding the 

broader class of Jonsson theories. Perfect Jonsson theories are often characterized by their well-

behaved lattices of existential formulas, model-theoretic properties, and their ability to interact 



Абай атындағы ҚазҰПУ-нің ХАБАРШЫСЫ, «Физика-математика ғылымдары» сериясы, №3(91), 2025 

33  

with other important concepts such as the #-companion and forcing companions. 

Definition 9.  

[18]. A Jonsson theory 𝑇 is said to be perfect, if every model of 𝑇 should be sufficiently 

saturated with respect to the model companion 𝑇∗, meaning it closely reflects the structure defined 

by 𝑇∗. 
It turns out that the semantic model of a perfect Jonsson theory is closed under existential 

quantification, meaning that the model satisfies the property that any system of existential 

formulas that can be satisfied in any larger model of the theory can also be satisfied within the 

model itself. 

Lemma 1.  

[18]. Let 𝐶𝑇 be the semantic model of a Jonsson theory 𝑇. Then 𝐶𝑇 is existentially closed model 

of 𝑇.  

The following theorem offers a criterion for determining whether a Jonsson theory is perfect: 

Theorem 2. (Criterion of Perfectness).  

[18]. Let 𝑇 be any Jonsson theory. If 𝑇 is perfect, then 𝑇∗ is the model companion of theory 

𝑇, and vice versa. 

In the case of a complete Jonsson theory, the concept of a companion (whether it's a #-companion, 

model companion, or other) is identical to the center of 𝑇.  

Corollary 1.  

In the case of a perfect Jonsson theory 𝑇, the #-companion coincides with the center of 𝑇, 

meaning 𝑇# = 𝑇∗. 
The concept of algebraic simplicity generalizes the notion of a simple model. It is defined by the 

fact that not every theory has an algebraically simple model. A general criterion for the existence of 

algebraically simple models has not yet been established. Additionally, the concept of a rigid model 

is closely related to algebraic simplicity, as both are concerned with specific structural properties of 

models in the context of a given theory.  

Definition 10.  

[20]. A model of 𝑇 is called algebraically prime if, for any other model of 𝑇, there exists 

an isomorphic embedding of the algebraically prime model into the other model. 

Algebraically prime models are highly embedded and play a key role in understanding the 

structure of models of a theory. 

Definition 11.  

[21]. A model 𝑀 of the signature of given theory 𝑇 (called a structure 𝑀 in this context) is called 

a core model if it is isomorphic (structurally identical) to the unique substructure within every model 

of 𝑇. 

Definition 12.  

[18]. A theory T is said to be an existentially prime if both classes 𝐸𝑇 and AP are non-empty and 

have a non-empty intersection. 

The following concept, introduced by A. Robinson, is closely connected to all the theories 

discussed above.  

Definition 13. 

[22]. A theory 𝑇 is called convex if, for any model 𝔄 ⊨ 𝑇 and any collection {𝔅𝑖|𝑖 ∈  𝐼} of 

substructures of 𝔄, where each 𝔅𝑖 ⊨ 𝑇, the intersection ⋂ 𝐵𝑖𝑖∈𝐼  is also a model of 𝑇, provided it is 

non-empty. A theory 𝑇 is strongly convex if the intersection is always non-empty and still a model 

of 𝑇. 

Let 𝑇 be a theory that is strongly convex, Jonsson, and perfect, and that is complete for existential 

sentences in the language 𝐿. The combination of these properties ensures that 𝑇 has a well-defined 

structure of models, with a unique core model and robust behavior in terms of existentially closed 

models and intersections of substructures. The completeness for existential sentences ensures 

that 𝑇 captures all existential properties in its models, further strengthening the theory's foundational 
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aspects. 

Definition 14.  

[17] A pregeometry (or matroid) (𝑋, 𝑐𝑙) is a set 𝑋 with a closure operator 𝑐𝑙: 𝔅(𝑋) → 𝔅(𝑋), where 

𝔅 denotes the Boolean of a set such that for all 𝐴 ⊆ 𝑋 and 𝑎, 𝑏 ∈ 𝑋:  

a) (Reflexivity) 𝐴 ⊆ 𝑐𝑙(𝐴).  
b) (Finite character) 𝑐𝑙(𝐴) is the union of all 𝑐𝑙(𝐴′), where 𝐴′ runs through all finite subsets of 𝐴.  

c) (Transitivity) 𝑐𝑙(𝑐𝑙(𝐴)) = 𝑐𝑙(𝐴).  
d) (Replacement lemma) 𝑎 ∈ 𝑐𝑙(𝐴𝑏)\𝑐𝑙(𝐴) ⇒ 𝑏 ∈ 𝑐𝑙(𝐴𝑎).  
A set 𝐴 is called closed (or cl-closed) if 𝐴 = 𝑐𝑙(𝐴). Note that the closure 𝑐𝑙(𝐴) of the set 𝐴 is the 

smallest 𝑐𝑙-closed set containing 𝐴. Therefore, the pregeometry is defined by a system of 𝑐𝑙-closed 

subsets. The operator 𝑐𝑙(𝐴) = 𝐴 for all 𝐴 ⊆ 𝑋 is a trivial example of pregeometry. Three standard 

examples from algebra: vector spaces with a linear closure operator, for a field 𝐾 with a simple field 

𝐹, with respect to an algebraic closure 𝑐𝑙(𝐴) = 𝐹(𝐴)𝑎𝑙𝑔 ∩ 𝐾, and for the field 𝐾 of characteristic 𝑝, 

the 𝑝-closure is given by 𝑐𝑙(𝐴) = 𝐾𝑝(𝐴). 
Later in the article, by the theory of  𝑇, we mean a strongly convex, perfect Jonsson theory, which 

is complete for existential sentences in the language 𝐿. The framework involves a pregeometry [17] 

defined by the closure operator 𝑐𝑙 on the set of all subsets of 𝐶𝑇. 

In a strongly convex, Jonsson, and perfect theory 𝑇, the concept of a Jonsson set 𝐴 is closely tied 

to the structure of existentially closed submodels of semantic models. The set 𝐴 is definable within 

the theory 𝑇, and its closure under the closure operator 𝑐𝑙 results in an existentially closed 

submodel 𝑁, which captures the model-theoretic characteristics of the set 𝐴. This interplay between 

definability, closure, and existential closure is crucial for understanding the internal structure of 

models in the context of a Jonsson theory. 

The notation 𝑇ℎ∀∃(𝑁) refers to the sets of all ∀∃-sentences, that are true in the model 𝑁. These 

sentences are those that are universally quantified and involve existential quantifiers in their 

structure. The collection 𝑇ℎ∀∃(𝑁) represents the set of all sentences that describe the properties 

of the existentially closed model 𝑁 in terms of the theory 𝑇, specifically focusing on the 

existential aspects of the model. 

Definition 15.  

[17] The Jonsson set is a subset 𝐴 of the semantic model 𝐶 of the Jonsson theory 𝑇, which has 

special properties that make it possible to study in detail the structure of the models of this theory. 

Definition 16. 

 [4]. The fragment 𝐹𝑟(𝑋) of the Jonsson set 𝑋 is a Jonsson theory obtained as a ∀∃-sentences 

which are true in the model 𝑁 which is a closure of this set, such that 𝐹𝑟(𝑋) = 𝑇ℎ∀∃(𝑁). 
The following definition provides a crucial extension of the concept of a Jonsson set. 

Definition 17. 

 [1]. A set 𝑋 is called almost Jonsson if it fulfills these conditions: 

1) 𝑋  is a definable subset of 𝐶𝑇, where 𝐶𝑇 is the semantic model of Jonsson theory 𝑇; 

2) 𝑐𝑙(𝑋) = 𝑀 ∈ 𝑀𝑜𝑑(𝑇).  
Furthermore, 𝑇ℎ∀∃(𝑀) = 𝑀

0 = 𝐹𝑟(𝑋), and 𝑀0 ∈ 𝐽𝑆𝑝(𝐶𝑇), where 𝐽𝑆𝑝(𝐶𝑇) denotes the 

Jonsson spectrum of 𝐶𝑇, i.e. 𝐽𝑆𝑝(𝐶𝑇) = {𝑇′| 𝑇′ is a Jonsson theory and 𝐶𝑇 ⊨ 𝑇′}. 
This concept can be illustrated by an example of an arbitrary abelian group, which turns out 

to be the closure of some existential formula defining an almost Jonsson set in this abelian group. 

The concept of normality for a Jonsson theory is defined for a class of theories where any 

fragment of their semantic models belongs to the Jonsson spectrum of 𝐶𝑇 of the given Jonsson 

theory. 

The following definition describes specific subsets of the semantic model of the given Jonsson 

theory. These subsets are important in understanding the structure and behavior of the models of 

the theory, particularly in relation to how they fit into the broader framework of the Jonsson 

spectrum and the properties of 𝑇. 
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Definition 18. 

[1]. The Jonsson theory 𝑇 is said to be normal if for any 𝑋 ⊆ 𝐶𝑇,  such that 

𝑐𝑙(𝑋) = 𝑀 ∈ 𝑀𝑜𝑑(𝑇), 𝐹𝑟(𝑋) = 𝑀0 ∈ 𝐽𝑆𝑝(𝐶𝑇) and 𝐶𝑀0 ⪯∃1 𝐶𝑇 , where 𝐶𝑀0 is a semantic 

model of 𝑀0. 

An example of a normal theory is the universal theory of all unars. This theory is characterized 

by the fact that it has an empty list of axioms and is Jonsson. 

These subsets are characterized by the fact that the formula that defines them has Morley 

rank [17]. Morley rank is a key concept in model theory that measures the complexity of 

definable sets. The following six properties are actually six axioms that define the Morley 

rankability properties, which govern how sets and their definability can be ranked in terms of 

complexity. 

Let us introduce the concept of a family of regular subsets of the semantic model 𝐶𝑇, denoted by 

𝑅𝑒𝑔(𝐶𝑇).  
Definition 19.  

A subset 𝑋𝑖 ⊆ 𝐶𝑇 is called regular if 𝑋𝑖 satisfies the following properties: 

1) For each 𝑖 ∈ 𝐼 the inclusion 𝑋𝑖 ∈ 𝑅𝑒𝑔(𝐶𝑇) holds;  

2) The set 𝑅𝑒𝑔(𝐶𝑇) is closed under finite Boolean combinations, i.e. from the inclusions 

𝐴, 𝐵 ⊆  𝐶𝑇
𝑛, 𝐴,𝐵 ∈ 𝑅𝑒𝑔(𝐶𝑇) it follows that 𝐴 ∪  𝐵 ∈ 𝑅𝑒𝑔(𝐶𝑇), 𝐴 ∩  𝐵 ∈  𝑅𝑒𝑔(𝐶𝑇) and 

𝐶𝑇
𝑛/𝐴 ∈  𝑅𝑒𝑔(𝐶𝑇); 

3) The set 𝑅𝑒𝑔(𝐶𝑇) is closed under the Cartesian product, i.e. from the inclusions 𝐴, 𝐵 ∈
 𝑅𝑒𝑔(𝐶𝑇) it follows that 𝐴 ×  𝐵 ∈  𝑅𝑒𝑔(𝐶𝑇); 

4) The set 𝑅𝑒𝑔(𝐶𝑇) is closed under the projection, i.e. if 𝐴 ⊆ 𝐶𝑇
𝑛+𝑚, 𝐴 ∈ 𝑅𝑒𝑔(𝐶𝑇), 𝜋𝑛(𝐴) 

is the projection of the set 𝐴 onto 𝐶𝑇
𝑛, then 𝜋𝑛(𝐴) ∈ 𝑅𝑒𝑔(𝐶𝑇); 

5) The set 𝑅𝑒𝑔(𝐶𝑇) is closed under specialization, i.e. if 𝐴 ∈ 𝑅𝑒𝑔(𝐶𝑇), 𝐴 ⊆ 𝐶𝑇
𝑛+𝑚 and 𝑐 ∈

𝐶𝑇
𝑛, then 𝐴(𝑐)  =  {(𝑐, 𝑎) ∈ 𝐴} ∈  𝑅𝑒𝑔(𝐶𝑇); 

6) The set 𝑅𝑒𝑔(𝐶𝑇) is closed under permutation of coordinates, i.e. if 𝐴 ∈ 𝑅𝑒𝑔(𝐶𝑇), 𝐴 ⊆
𝐶𝑇
𝑛, and 𝜎 is a permutation of the set {1, . . . , 𝑛}, then 𝜎(𝐴)  =  {(𝑎1, . . . , 𝑎𝑛)  ∈  𝐴}  ∈  𝑅𝑒𝑔(𝐶𝑇). 
In the context of a Jonsson theory, the regular subsets of the semantic model 𝐶𝑇 are subsets that 

exhibit specific properties in relation to the closure operator and definability. Regular sets are those 

that satisfy closure under various set-theoretic operations, preserving their regularity in the 

context of definable subsets of 𝐶𝑇. 
Lemma 2. Let us consider a subset of existentially closed models 𝐾 from a class of models of 

normal Jonsson theory 𝑇 and the set of all ∀∃-sentences true in the models of 𝐾. Then, the theory 

𝑇ℎ∀∃(𝐾) is a normal Jonsson theory.  

This is a useful result in model theory as it demonstrates how properties of existential closure 

and ∀∃-sentences are preserved in the context of Jonsson theories. 

Proof. Let 𝐾 ⊆ 𝐸𝑇, 𝑇 be a normal Jonsson theory. Since 𝑇 is a normal Jonsson theory, then 𝑇 

has 𝐽𝐸𝑃, then according to Theorem 3 ∀𝐴, 𝐵 ∈ 𝐸𝑇 ⇒ 𝑇0(𝐴) = 𝑇0(𝐵). 
Theorem 3. [23] Let there exist two existentially closed models 𝐴 and 𝐵 of a theory 𝑇 that satisfy 

JEP, then any ∀∃-sentence true in one model must also be true in the other model.  

This follows from the preservation of existential closure and the properties of the JEP, ensuring 

that existentially closed models of a Jonsson theory (and in general, models satisfying the joint 

embedding property) share consistent truth conditions for ∀∃-sentences. And now let us define the 

concept of the Kaiser class of models for the arbitrary of the Jonsson theory. The Kaiser class 

𝐾𝑇 is defined as 𝐾𝑇 = {𝐴 ∈ 𝑀𝑜𝑑𝑇|𝑇ℎ∀∃(𝐴) is a Jonsson theory}.  

Proposition 2. It is clear that 𝐸𝑇 ⊆ 𝐾𝑇. 

1. 𝐾𝑇 ≠ ∅ (if 𝑇 = 𝑇∗ = 𝑇ℎ(𝐶𝑇) and 𝑇 is perfect then  𝐾𝑇 = 𝐸𝑇). 

2. ∀𝑀 ⊆ 𝐾𝑇, 𝑇ℎ∀∃(𝑀) is a Jonsson theory. 

The Jonsson sets and almost Jonsson sets play a key role in the generation of fragments in the 

context of a normal Jonsson theory. Specifically, when a Jonsson theory is normal, these sets 
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generate fragments from the models of the Kaiser class of the theory. These generated fragments 

are cosemantic with the Jonsson theory under consideration. 

2. Classification of fragments by categoricity. 

Definition 20.  

[20] 𝜑 is a Δ-formula with respect to the theory 𝑇 if it can be expressed in terms of two existential 

formulas 𝜓1 and 𝜓2 that are both logically equivalent to 𝜑 in the models of 𝑇. 

Existential formulas are often called ∃-formulas. 

Therefore, Δ -formulas are invariant under embeddings between models of theory 𝑇. Along with the 

∃-formulas, they constitute the main classes used to define relations in algebraically prime models.  

Definition 21.[20]. 

(i) (𝐴, 𝑎0, 𝑎1, . . . , 𝑎𝑛−1) ⇒𝛤 (𝐵, 𝑏0, 𝑏1, . . . , 𝑏𝑛−1) means that the formula 𝜑 is true in 𝐴 with 

parameters 𝑎̅ if and only if it holds in 𝐵 with the corresponding parameters 𝑏̅.  

(ii) (𝐴, 𝑎̅) ≡𝛤 (𝐵, 𝑏̅) holds if both of the following conditions are satisfied: 

1. (𝐴, 𝑎̅) ⇒𝛤 (𝐵, 𝑏̅); 

2. (𝐵, 𝑏̅) ≡𝛤 (𝐴, 𝑎̅). 
As classes, we will consider either △ or ∃. 

Definition 22. 

[20]. A formula 𝜑(𝑥1, 𝑥2, . . . , 𝑥𝑛) is said to be complete for 𝛤-formulas if the following 

conditions hold: 

(i) 𝜑 must be consistent with the theory 𝑇.  

(ii) for every formula 𝜓(𝑥1, 𝑥2, . . . , 𝑥𝑛) in the class 𝛤 that has the same free variables as 𝜑, 

one of the following must holds: 𝑇 ⊨ ∀𝑥̅(𝜑 → 𝜓), which means that 𝑇 proves 

that 𝜑 implies 𝜓 for all possible values of the variables 𝑥̅, or 𝑇 proves that 𝜑 implies the negation 

of 𝜓 for all values of 𝑥̅, 𝑇 ⊨ ∀𝑥̅(𝜑 → ¬𝜓). 
Definition 23.  

[20]. A model 𝔄 is called a Γ1, Γ2-atomic model of a theory 𝑇 if the following conditions hold: 

𝔄 ⊨ 𝑇, which implies that all sentences in 𝑇 are satisfied in 𝔄; and for every finite 𝑛-tuple of 

elements from the universe of 𝔄, there exists a formula 𝜓(𝑥) ∈ Γ1 such that 𝜓(𝑥) is complete 

for Γ2-formulas in the sense that, for any formula 𝜃(𝑥̅) ∈ Γ2, either 𝑇 ∪ {𝜓(𝑥̅)} ⊨ 𝜃(𝑥̅) or 𝑇 ∪
{𝜓(𝑥̅)} ⊨ ¬𝜃(𝑥̅) and 𝜓(𝑥̅)} holds for 𝑎̅ in 𝔄. 

Let 𝑀0 be a perfect normal strongly convex fragment complete for existential sentences. Then the 

following properties holds:  

(i) 𝑀0 is an existentially prime normal theory;  

(ii)  in particular, 𝑀0 has a core model. By [10], this core model is (∆, ∃)-atomic.  

To establish the groundwork for Theorem 9, we introduce the following key definitions and 

results: 

Theorem 4. (Saracino) [24]. Let 𝑇 be a complete theory in a countable language. Then the 

theory 𝑇 is 𝜔-categorical if and only if the theory 𝑇 has a model companion 𝑇∗, and 𝑇∗ is 𝜔-

categorical. 

Definition 24.  

[20]. Σ-nice and 𝛴∗-nice algebraically prime models: 

(i) A model 𝔄 is called a Σ-nice algebraically prime model of the theory 𝑇 if 𝔄 is a countable 

model of 𝑇 and for every model 𝔅 of 𝑇 and for any tuple 𝑎̅ in 𝔄 and 𝑏̅ in 𝔅, if 

(𝐴, 𝑎0, 𝑎1, . . . , 𝑎𝑛−1) →∃ (𝐵, 𝑏0, 𝑏1, . . . , 𝑏𝑛−1) (i.e., the ∃-quantifier embedding relation holds 

between the tuples in the two models), then for every 𝑎𝑛 ∈ 𝐴, there exists a corresponding 𝑏𝑛 ∈
𝐵 such that: (𝐴, 𝑎0, 𝑎1, . . . , 𝑎𝑛)  →  (𝐵, 𝑏0, 𝑏1, . . . , 𝑏𝑛). 

(ii) A model 𝔄 is called a 𝛴∗-nice algebraically prime model of 𝑇 if 𝔄 is countable model and for 

every model 𝔅 of 𝑇, every 𝑛 ∈ 𝜔, and for all 𝑎0, 𝑎1, … , 𝑎𝑛−1 ∈ 𝐴, 𝑏0, 𝑏1, . . . , 𝑏𝑛−1 ∈ 𝐵, if 

(𝐴, 𝑎0, 𝑎1, . . . , 𝑎𝑛−1) ≡∃  (𝐵, 𝑏0, 𝑏1, . . . , 𝑏𝑛−1), then for every 𝑎𝑛 ∈ 𝐴 there exists some 𝑏𝑛 ∈ 𝐵 such 

that (𝐴, 𝑎0, 𝑎1, . . . , 𝑎𝑛) ≡∃  (𝐵, 𝑏0, 𝑏1, . . . , 𝑏𝑛).  
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Remark 2. As established in [20], an ∃-complete, perfect, strongly convex fragment both 

possesses a core model and serves as a core model itself. Moreover, the (∆, ∃)-atomicity of this 

fragment implies (𝛴, 𝛴)-atomicity, as shown in [20]. 

This is a stronger atomicity condition that indicates the fragment is highly structured in terms of 

both existential and universal quantification, making it a foundational building block for the model-

theoretic analysis of Jonsson theories. 

Theorem 5. [20]. If two models of 𝑇 are countable and (𝛴, 𝛴)-atomic, then these two models 

are isomorphic.  

To proceed with the proof of Theorem 13, we need to introduce several important concepts 

and results that will help structure the argument. 

Definition 25. 

 [20]. A theory 𝑇 is said to satisfy 𝑅1 if for any existential formula 𝜑(𝑥̅) consistent with 𝑇 there 

exists a formula 𝜓(𝑥̅) ∈ ∆, also consistent with 𝑇, such that 𝑇 ⊨  𝜓 → 𝜑.  

Definition 26.  

[20]. A countable model 𝔐 of a theory 𝑇 is called countably algebraically universal if, for 

every countable model 𝔑 of 𝑇, there exists an isomorphism 𝔑 → 𝔐. 

Theorem 6. [20]. Let 𝑇 be a ∀∃-theory complete for existential sentences, and assume that 𝑇 

satisfies 𝑅1. Then, there is an equivalence between the existence of models with certain atomic 

properties – such as an algebraically prime model, (∃, ∆) -atomic model and (∆, ∃) -atomic model, 

∆-nice algebraically prime model and the existence of a unique algebraically prime model. 

The equivalence of the conditions discussed above highlights that a complete ∀∃-theory that 

satisfies 𝑅1 exhibits strong and consistent structural properties, particularly in terms of the 

atomicity and uniqueness of its models. 

M. Morley’s criterion (see [25]) for the 𝜔1-categoricity of a complete theory is a well-known 

result in model theory. The criterion provides a necessary and sufficient condition for a complete 

theory to be categorically unique in all uncountable models, which is a significant aspect of the 

theory’s structure and its models. 

Definition 27.  

[20]. A model 𝔐 is said to be a proper prime elementary extension of 𝔑 if 𝔐 ⪶ 𝔑 and for any 

model 𝔎 such that 𝔎 ⪶ 𝔑, it follows that 𝔐 ≺ 𝔎.  

Next theorem provides a criterion for 𝜔1-categoricity based on the existence of proper prime 

elementary extensions, linking model-theoretic structure to categoricity. 

Theorem 7. (Morley) [25]. If 𝑇 is 𝜔1-categorical, then every countable model of 𝑇 can be 

extended to a proper prime elementary extension. Conversely, if every countable model of 𝑇 has a 

proper prime elementary extension, then 𝑇 must be 𝜔1-categorical. 

In the framework of Jonsson theories, we offer an analogous version of Definition 27. Both deal 

with prime extensions, but Definition 27 applies to elementary extensions in general model theory, 

while Definition 28 specifically addresses extensions in Jonsson theories. 

Definition 28.  

[18]. Let 𝔐  and 𝔑 be models from 𝐸𝑇, where 𝔐 ⊊ 𝔑. We say that 𝔑 is an algebraically 

prime model extension of 𝔐  within 𝐸𝑇 if every isomorphic embedding of 𝔐 into any model 

𝔎 ∈ 𝐸𝑇 can be extended to an isomorphism 𝔑⟶ 𝔎. 

To refine Theorem 7 within the context of studying fragments of Jonsson theories, we need 

to focus on the specific structure of Robinson theories, which are universally axiomatized 

Jonsson theories. These theories have a set of key properties, including the fact that they are 𝜔1-

categorical and 𝜔-stable, which helps us refine the notion of Morley rank. 

Regular subsets of the semantic model 𝐶𝑇 play a significant role in understanding the properties 

of the theory 𝑇. These subsets often represent well-behaved or structured portions of the model. 

The Morley rank provides a measure of complexity or definable structure within a model. It assigns 

a rank to definable sets, giving insight into their size and behavior in the context of a complete theory. 
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In Jonsson theories, fragments (subsets of the theory with specific logical properties) often exhibit 

interesting relationships with the model-theoretic notions like stability and rank. 

The Morley rank of regular subsets in 𝐶𝑇 helps analyze these fragments, providing a structured 

way to understand their properties within the semantic model. 

 

Results of the study 

In this section, we consider the issues related to the categoricity of the considered fragments 

of normal theories. Moreover, the fragments are generated by almost Jonsson regular subsets of 

the semantic model of the regarded Jonsson theory. 

Let 𝑇 be a normal Jonsson theory. And let 𝐴 be a subset of the semantic model 𝐶𝑇, 𝐴 is an 

almost Jonsson set, meaning 𝑐𝑙(𝐴) = 𝑀 ∈ 𝐾𝑇, where 𝐾𝑇 - the Kaiser class of the normal fixed 

Jonsson theory. 𝑇ℎ∀∃(𝑀) = 𝐹𝑟(𝐴) = 𝑀
0. 

The following points describe the properties of these fragments. 

Lemma 3. The fragment 𝑀0 is a Jonsson theory.  

This result is proven in the reference [18]. 

Let 𝑀0# be the #-companion of the fragment 𝑀0. 

Theorem 8. If 𝑐𝑙(𝐴) ∈ 𝐾𝑇, then the following conditions are equivalent: 𝑀0 is perfect if and 

only if 𝑀0# is axiomatized by ∀∃-sentences. 

This result is extracted in [18]. 

Theorem 9. Let 𝑐𝑙(𝐴) ∈ 𝐾𝑇. Then the following conditions are equivalent: 

(i) 𝑀0 is perfect,  

(ii) 𝑀0 has a model companion. 

The proof of this equivalence follows from the criterion of perfectness. 

The subsequent statement is easily verified. 

Lemma 4. Let 𝑐𝑙(𝐴1)  =  𝑀1, 𝑐𝑙(𝐴2) = 𝑀2, and both 𝑀1,𝑀2 are elements of the class 𝐾𝑇. 

Suppose 𝑀1,𝑀2 are Kaiser hulls of the normal Jonsson theory. Then 𝑀1
0 and 𝑀2

0 are mutually 

model consistent is equivalent to the equality of their #-companions. 

Proof. If 𝑀1
0 and 𝑀2

0 are mutually model consistent, then (𝑀1
0)∀ = (𝑀2

0)∀, and by the definition 

of the #-companion, the #-companions will be equal. Conversely, if the #-companions of 𝐴1 and 

𝐴2 coincide, then (𝑀1
0)∀ = (𝑀2

0)∀. By part (i) of the definition #-companion, 𝑀1
0 = (𝑀1

#)∀ and 𝑀2
0 =

(𝑀2
#)∀. Consequently (𝑀1

0)∀ = (𝑀2
0)∀. Thus, 𝑀1

0 and 𝑀2
0 are mutually model consistent. 

It is well-known that the concepts of model completeness and the completeness of a theory do not 

generally coincide. However, Lindstrom’s theorem [5] establishes a connection between these two 

concepts. The following theorem is related to Lindstrom’s theorem on model completeness. 

We are considering Jonsson fragments, specifically 𝑀0, within a framework where  𝑐𝑙(𝐴) ∈ 𝐾𝑇. 

Here, 𝑐𝑙(𝐴) represents the closure of a set 𝐴, and 𝐴 is a subset of 𝐶𝑇 of a Jonsson theory 𝑇. The 

theory 𝑇 is existentially prime, strongly convex, and normal. These properties ensure that 𝑇 has 

certain robust closure properties, particularly under intersections and embeddings of models. 

Theorem 10. Let the closure of the set 𝐴, denoted 𝑐𝑙(𝐴) belongs to certain class 𝐾𝑇, and let 𝑀0 

be a perfect normal Jonsson theory. Then 𝑀0 is complete if and only if it is model complete, and 

vice versa.  

Proof. Firstly we note that, from the perfectness of an existentially prime strongly convex Jonsson 

theory the perfectness of a fragment follows. 

(𝑖) ⇒ (𝑖𝑖) Assuming 𝑀0 is complete, we need to show that it is model complete. 

Let 𝑀0 be a complete fragment of the Jonsson set 𝐴. Consider the central completion of 𝑀0, 

denoted (𝑀0)∗. Since 𝑀0⊆(𝑀0)∗ and 𝑀0 is complete, we have 𝑀0=(𝑀0)∗. The model (𝑀0)∗ is 

the center of the fragment and is part of the normal Jonsson set, which is existentially prime and 

strongly convex. By the criterion of perfectness, 𝑀0 is a perfect fragment. Therefore, 

the center of 𝑀0 coincides with its model companion, which is model complete. 
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Thus, 𝑀0 is model complete. 

(𝑖𝑖)  ⇒  (𝑖): The proof uses JEP of fragment 𝑀0  and the model completeness of (𝑀0)#.  

Suppose the opposite, i.e. 𝑀0 is not complete, then there is a sentence 𝜑 such that 

neither  𝜑 nor ¬𝜑 is deducible in 𝑀0. This would lead to two inconsistent sets: 𝑀0 ∪ 𝜑 and 𝑀0 ∪
¬𝜑. By the Joint Embedding Property (JEP), there would be two models, 𝐴1 and 𝐴2, satisfying 𝑀0 ∪
𝜑 and 𝑀0 ∪¬𝜑, respectively. These models 𝐴1 and 𝐴2 can be embedded isomorphically into a 

common model 𝐵 by elementary embeddings 𝑓1 ∶ 𝐴1 → 𝐵 and 𝑓2 ∶ 𝐴2 → 𝐵. However, this leads to 

a contradiction because 𝐵 ⊨ 𝜑 ∧ ¬𝜑. Therefore, 𝑀0 must be complete. 

The theorem below essentially says that under the conditions described, the model 𝔄 will satisfy 

all these atomic and nice properties, showing the interaction between them in this context. 

Theorem 11. Let 𝑀0 be an ∃-complete, perfect, normal, strongly convex Jonsson fragment, 

where 𝑐𝑙(𝐴) belongs to 𝐾𝑇 (means that the closure of some set 𝐴 under the closure operator 𝑐𝑙 is a 

model in the class 𝐾𝑇 of 𝑇-models) of some normal Jonsson set 𝐴, and let 𝔄 be a countable model 

of the theory 𝑀0. It follows that (𝑖) ⇒ (𝑖𝑖) and (𝑖𝑖) ⇒ (𝑖𝑖𝑖), where: 

(i) 𝔄 is (𝛴, 𝛴) −atomic,  

(ii) 𝔄 is 𝛴∗-nice, 

(iii) 𝔄 is existentially closed and 𝛴-nice.  

The proof follows from Remark 1 and [19]. 

Theorem 12. Consider 𝑀0 as a ∀∃-complete, perfect, normal, and strongly convex Jonsson 

fragment of a normal Jonsson set 𝐴, where 𝑐𝑙(𝐴) ∈ 𝐾𝑇. Then the following statements are 

equivalent: if the #-companion of a Jonsson fragment 𝑀0 is 𝜔-categorical, then 𝑀0 is 𝜔-

categorical, and vice versa. 

Proof. (𝑖) ⇒ (𝑖𝑖) Assume that (𝑀0)# is 𝜔-categorical. From Theorem 1 (part ii), (𝑀0)# is 

complete. By Theorem 4, (𝑀0)# has a unique 𝜔-categorical #-companion, denoted (𝑀0)#. Since 

(𝑀0)# is model-consistent with 𝑀0, it follows that the models of (𝑀0)#
′
 must be also consistent 

with 𝑀0. Moreover, the model-completeness of (𝑀0)# ensures that every formula in the 

language of (𝑀0)#
′
is equivalent to an ∃-formula. Applying Robinson’s theorem on the 

uniqueness of model companions, and the criterion of perfection for a normal Jonsson theory, it 

follows that (𝑀0)# = (𝑀0)#
′
. Since (𝑀0)#

′
 is 𝜔-categorical, it has a unique countable model 

𝑁, which is countably saturated. This model 𝑁 belongs to the class of models of 𝑀0, as 

𝑀𝑜𝑑(𝑀0)# ⊆  𝑀𝑜𝑑(𝑀0)#
′
. By the perfection criterion of a normal Jonsson theory, 𝑁 is also 𝛴∗-

nice-model. Furthermore, 𝑀𝑜𝑑(𝑀0)# = 𝐾#, where 𝐾# contains a unique (up to an isomorphism) 

countable model 𝑁, which is (𝐿, 𝐿) −atomic as defined in Definition 24, where 𝐿 is the full 

language. Therefore, 𝑁 is also a (𝛴1, 𝛴1)-atomic model of (𝑀0)#, due to the model-completeness 

of (𝑀0)# (since (𝑀0)# = (𝑀0)#
′
). By the ∃-completeness of 𝑀0, 𝑁 is a (𝛴1, 𝛴1)-atomic model 

of (𝑀0)#. Finally, by Theorem 11, 𝑁 is a 𝛴∗-nice-model. Let 𝐵 an arbitrary countable model of 

𝑀0, so 𝐵 ∈ 𝑀𝑜𝑑(𝑀0)# and 𝑐𝑎𝑟𝑑𝐵 =  𝜔. Since 𝑀0 is ∃-complete, it follows that 𝑁 ≡∃ 𝐵 (this 

serves as the induction base). By the definition of 𝛴∗-niceness, we can inductively obtain 

(𝑁, 𝑎)𝑎∈𝑁 ≡∃ (𝑁1, 𝑓 (𝑎))𝑎∈𝑁 , where 𝑓 is a mapping such that 𝑓(𝑎) = 𝑎 for any 𝑎 ∈ 𝑁. Hence, 

(𝑁, 𝑎)𝑎∈𝑁 ≡∃ (𝑁1, 𝑓 (𝑎))𝑎∈𝑁 , which implies 𝑁 ⪯∃ 𝐵. Thus, 𝐵 is a (𝛴1, 𝛴1)-atomic model. By 

Theorem 5, 𝐵 ≅ 𝑁. Since 𝐵 was arbitrary, the fragment 𝑀0 is 𝜔-categorical. 

(𝑖𝑖) ⇒ (𝑖) Now assume that 𝑀0 is 𝜔-categorical. Suppose, for the sake of contradiction, that 

(𝑀0)# is not 𝜔-categorical. If (𝑀0)# were not 𝜔-categorical, there exist non-isomorphic 

countable models 𝑁 and 𝐵 of (𝑀0)#. However, since 𝑀0 ⊆ (𝑀0)#, the models 𝑁 and 𝐵 would 

also belong to the class of models of 𝑀0 (i.e., 𝑁,𝐵 ∈ 𝑀𝑜𝑑𝑀0). This contradicts the assumption 

that 𝑀0 is 𝜔-categorical. Thus, (𝑀0)# must also be 𝜔-categorical. 

Theorem 13. Let 𝑐𝑙(𝐴) belongs to 𝐾𝑇, where 𝐴 is a regular set. Let 𝑀0 be Jonsson fragment, 

which is an existentially prime, perfect normal Jonsson theory that is complete for the existential 
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sentences of a Jonsson universal theory satisfying 𝑅1. Then the structure (𝑀0)# is 𝜔1-categorical if 

and only if any countable model in 𝐾𝑀0  possesses an algebraically prime model extension in 

𝐾𝑀0 , and vice versa. 

Proof. (𝑖) ⇒ (𝑖𝑖) Let (𝑀0)# be 𝜔1-categorical. By Morley’s theorem on uncountable 

categoricity, (𝑀0)# is perfect. Then, by the criterion of the perfectness of a Jonsson theory, 

(𝑀0)# is a model complete theory, and we have 𝑀𝑜𝑑(𝑀0)# = 𝐾𝑀0  . Since (𝑀0)# 
is model-

complete, any isomorphic embedding between its models is elementary. Moreover, as (𝑀0)# 

is a complete theory, applying Theorem 2 yields the required statement. 

(𝑖𝑖) ⇒ (𝑖) By Lemma 3.11.2 of [18] applied to the semantic model ℭ of an existential prime 

perfect Jonsson theory 𝑀0, we know that ℭ is ω-universal. Typically, its cardinality exceeds 

countability. Thus, we consider a countable elementary submodel 𝔇 ⊆ ℭ. Since ℭ is existentially 

closed (by Lemma 3.11.3. of [18]), the submodel 𝔇 is also existentially closed. Consequently, 𝔇 

is countably algebraically universal. By the assumption that 𝑀0 is existentially prime, 𝑀0, 

possesses an algebraically prime model 𝔄0. We now construct a chain of algebraically prime 

model extensions {𝔄𝛿}:  
(i) Define 𝔄𝛿+1 as an algebraically prime model extension of 𝔄𝛿; 

(ii) 𝔄𝜆 =∪ {𝔄𝛿|𝛿 < 𝜆}. 
Let 𝔄 =∪ {𝔄0𝛿|𝛿 < 𝜔1}. Suppose 𝔅 ⊨ 𝑀0 and 𝑐𝑎𝑟𝑑𝔅 = 𝜔1. To prove 𝔅 ≈ 𝔄, 

decompose 𝔅 into a chain {𝔅𝛿|𝛿 < 𝜔1} of countable models. This decomposition is possible 

due to the existential prime Jonsson theory 𝑀0.  

We now define a function 𝑔:𝜔1 → 𝜔1 and construct a sequence of isomorphisms {𝑓𝛿 ∶
𝔄𝑔𝛿 → 𝔅𝛿|0 < 𝛿 < 𝜔1} by induction on 𝛿: 

(i) 𝑔0 = 0 and 𝑓0 ∶ 𝔄0 → 𝔅0. 
(ii) 𝑔𝜆 = ∪ {𝑔𝛿|𝛿 <  𝜆} and 𝑓𝜆 =∪ {𝑓𝛿|𝛿 < 𝜆}. 
(iii) 𝑓𝛿+1 is equal to the union of the chain {𝑓𝛿

𝛾
|𝛾 ≤ 𝜌 where 𝜌 is determined by induction 

on 𝛾. 

(iv) 𝑓𝛿+1
0
 =  𝑓𝛿 , 𝑓𝛿+1

𝜆 = ∪ {𝑓𝛿|𝛿 <  𝜆}. 

(v) Suppose that 𝑓1
𝜆: 𝔄𝑔𝛿+𝛾 → 𝔅𝛿+1. If 𝑓𝛿

𝛾+1
is a mapping onto, then 𝜌 =  𝛾. 

Otherwise, by virtue of the algebraic primeness of 𝔄𝑔𝛿+𝛾+1 we can continue 𝑓𝛿
𝛾+1

 to 

𝑓𝛿+1
𝛾+1

: 𝔄𝑔𝛿+𝛾+1 → 𝔅𝛿+1. 

(vi) 𝑔(𝛿 + 1) = 𝑔𝛿 + 𝜌. 
It follows that 𝑓 = ∪ {𝑓𝛿|𝛿 < 𝜔1} is an isomorphism between 𝔄 and 𝔅. By Theorem 12, 

since 𝔅 was an arbitrary model of 𝑀0, and A is the unique algebraically prime and 

existentially closed model (by assumption and construction), 𝐾𝑀0 has a unique model of 

uncountable cardinality. Therefore, the semantic model of an existentially prime Jonsson 

theory 𝑀0 is saturated, which implies that 𝑀0 is perfect. Consequently, 𝑀𝑜𝑑(𝑀0)# = 𝐾𝑀0 , 
and (𝑀0)# is 𝜔1-categorical. 

 

Discussion 

This work highlights the significance of  𝜔1-categoricity as a central property that connects the 

algebraic, existential, and structural aspects of existentially prime Jonsson theories. This relationship 

provides a unified framework for systematically studying the logical properties of these theories, 

offering both theoretical and practical insights for future research in model theory and the exploration 

of Jonsson theories. 
 

Conclusion 

The results presented reveal a notable connection between the model-theoretic properties of 

Jonsson theories and their respective fragments, especially in terms of 𝜔1-categoricity, algebraic 

primeness, and existential completeness. This connection enhances our understanding of how these 
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properties influence the structure and behavior of models in Jonsson theories, demonstrating that  𝜔1
-categoricity guarantees the uniqueness of countable models, while algebraic primeness and 

existential completeness ensure strong closure properties for these models under extensions and 

embeddings. Together, these properties provide a comprehensive framework for studying the logical 

foundations of the theory. Specifically, we have shown the equivalence of  𝜔1-categoricity and 

algebraic primeness, perfectness and model-completeness, and the ∀∃-complete, perfect, normal, and 

strongly convex Jonsson fragment of a normal Jonsson set 𝐴. This analysis not only deepens our 

understanding of the structure of Jonsson theories but also paves the way for future research on the 

connections between algebraic and existential properties of such models. Furthermore, the results 

highlight the importance of  𝜔1-categoricity as a central concept for linking various model-theoretic 

aspects, offering new insights into the behavior and classification of models within these theories. In 

sum, the work emphasizes that  𝜔1-categoricity serves as a unifying property for understanding the 

model-theoretic behavior of existentially prime Jonsson theories, linking their algebraic, existential, 

and structural characteristics within a coherent and elegant framework. 

All the essential concepts and statements related to these notions, which were not defined or 

discussed in the text of this article, can be found in the following list of references. 
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