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Abstract

In this article we present concrete results on both the countable and uncountable categoricity of some
fragments. Our research on the categoricity of these fragments is conducted within the extended framework of
normal Jonsson theory. The fragments are derived through the application of the closure operator of a specified
pregeometry, and the involved sets are regular. The resulting models in this context constitute the Kaiser class
associated with a studied Jonsson theory. These models exhibit distinct and interesting structural properties,
making them a subject of extensive study. Furthermore, we analyze how variations in the underlying
pregeometry influence the classification of fragments. Such an approach makes it possible to identify broader
and deeper connections between categoricity and model-theoretic stability, thereby significantly expanding
and refining the understanding of their interrelation in the context of contemporary fundamental scientific
research.
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KAUM3EP KJIACHI YIIIH 9QJIBETTIIIK (KATEI'OPJIBLIIBIK) KACUETTEPI

Anoamna

Byn makanama 6i3 Oenrimi Oip ¢parMeHTTEpHAiH CaHANATHIH JKOHE CAHAIMAWTHIH QIOSTTUIITT OOWBIHIIA
HAKThl HOTWXKENEpHi YChIHAMBI3. byn QparMeHTTepAiH oNOETTUNrH 3epTTey HOpPMaibli HOHCOHIBIK
TEOPUSICHIHBIH KEHEHUTUTeH IeHOepinae Kypriziuimi. dparMeHTTep anFamikbl T€OMETPUSHBIH TYHBIKTaMa
OTepaTopbl apKbUIBl ABIHABL, Al KOJJIaHBUIFAH KHUBIHAAD TYPaKThl 00BN TaObutaapl. byn skarmaiina
aJIBIHFaH MOJIENbJIEP 3ePTTEITCH HOHCOHIBIK TeOpHUsChiHA coiikec Kaiizep kiachiH Kypaiiael. by Moxenbaep
€pEeKIlle KBI3BIKThI KYPBUIBIMIBIK KACHETTEPHl KOPCETeIl *OHE KEHIHCH 3epPTTEy HbICAHBIHA alHaJaJlbl.
CoHbIMEH KaTap, HETi3ri ajfalliKbl FeOMETPHsJarbl e3repicTepliH (parMeHTTepAl KIKTeyre Kaiaid acep
CTeTIHIH TaJigaiMpI3. MyHmal TocUl QNMOCTTIIIK TEH MOJECIbIIK-TEOPHUSIIBIK TYPAKThUIBIK apachIHIaFbl
aHaFypiibIM KEeH opi TepeH OalaHbICTapAbl aiKplHAAayFa MYMKIHIIK Oepei, OchbuIaiiiia oNlapiblH e3apa
KaTBIHACKIH Ka3ipri ipreii FRUIBIMU 3epTTeyiep asChlHAa e0yip KeHEeUTII, TepeH IeTiN, HaKThIIai Tycei.

Tyiiin ce3aep: HOHCOHIBIK TEOPUS, CEMAaHTHKAIIBIK MOJIE)h, HOHCOHBIK KUBIH, HOHCOH/IBIK JEPITiK KUBIH,
KaJIBINTHUIBIK, TYPAKTHUIBIK,

A.P. Emkees!, O.1. Vas6puxt!, A.K. Komekona'
'KaparanmHckuil ynuBepcuteT nMenu akanemuka E.A. Bykerosa, r. Kaparanna, Kasaxcran
CBOMCTBA KATETOPUYHOCTH U151 KJIACCA KAHU3EPA

Annomayust

B naHHOI cTaThe MBI IPEICTABISIEM KOHKPETHBIE PE3YJIbTAThl UCCIENOBAHUA O CUETHONW M HECUETHOU
KaTerOpMYHOCTH HEKOTOPBIX (hparMeHToB. M3ydeHue KaTeropmyHOCTH STHX (PparMeHToB MPOBOIUTCS B
pacIIMpPEHHBIX paMKax HOPMalbHONM HMOHCOHOBCKOW TeopuH. dDparMeHTHl MOTy4aroTcd C HUCHOJIb30BaHUEM
orepaTopa 3aMbIKaHUs 3aJaHHON MPEATeOMETPHH, a pacCMaTPUBaeMble MHOYKECTBA SBISIOTCS PETYIISIPHBIMU.
[lonmy4yeHHsle MOzeNIM B IaHHOM citydae o0pasytoT kiacc Kaiizepa, cBs3aHHBIN ¢ n3ydyaeMoil HOHCOHOBCKON
Teopueld. DTH MOJENU JEMOHCTPUPYIOT 0cOoOble HMHTEPECHBIE CTPYKTYypHBIE CBOWCTBA, YTO HENIAET HX
MIpeIMETOM aKTUBHOTO M3ydeHusi. Kpome Toro, Mbl aHaM3upyeM, Kak M3MEHEeHHsI B 6a30BO MpeAreoOMeTpUn
BIMSIOT Ha Kiaccudukanuio (parMeHToB. [10J00HBIM MOAXOMA TMO3BOJSET BBIIBUTH 0OJiee NIMPOKUE U
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IyOOKHE CBS3M MEXJy KATCTOPUYHOCTHIO W MOJCIBHO-TCOPETUYCCKONW CTAOMILHOCTBIO, TEM CaMBIM
CYIIECTBEHHO pACHIMpsisi ¥ YTOYHSSI TIOHHNMAaHHE UX B3aWMOCBSA3M B KOHTEKCTE COBPEMEHHBIX
(hyHIaMEHTAITLHBIX HAYYHBIX UCCIICIOBAHUM.

KuioueBblie cioBa: HOHCOHOBCKAsl TEOPUS, CEMAHTHUYECKAs] MOJI€Th, HOHCOHOBCKAasi MHOXKECTBO, MOYTH
HOHCOHOBCKAsi MHOXKECTBO, HOPMAIBHOCTb, PETYIISPHOCTD.

Introduction

The main results of the paper are given in the form of new theorems exploring the relationships
between key properties of a perfect normal Jonsson theory M°, such as completeness, model
completeness, V3-axiomatizability, and the existence of a model companion. The focus is on how
structures related to cl(A) € Ky and M° ensure the equivalence of these fundamental properties
within the framework of Jonsson theory. The results establish a profound connection between the
fundamental properties of a perfect normal Jonsson theory M°. Specifically, it has been shown that
the properties of completeness, model completeness, V3-axiomatizability, and the existence of a
model companion are all equivalent within the framework of Jonsson theory. Furthermore, the
structures related to cI(A) € Ky and M° play a crucial role in ensuring this equivalence.

This article examines the model-theoretic characteristics of particular subsets within the semantic
models of a given fixed normal Jonsson theory, with a primary focus on regular almost Jonsson sets.
The foundational concepts of normality for Jonsson theories and almost Jonsson sets, first introduced
in [1], serve as the basis for this investigation. Regularity is presented as a natural and essential
requirement for definable sets to qualify as Jonsson sets. To enable effective analysis, the defining
formula of a Jonsson set must satisfy established model-theoretic criteria. In this study, the property
of regularity is axiomatically formulated, with the defining set characterized by a formula possessing
a Morley rank. This approach integrates seamlessly with the broader framework of studying Jonsson
theories in the context of Morley rank, as previously developed in [2].

Building on foundational works [1], [3], and [4], this article addresses the challenges posed by the
general incompleteness of Jonsson theories. In the absence of a comprehensive analysis of the
Lindenbaum-Tarski Boolean algebra of formulas and its associated Stone space of types, alternative
methods are employed. Following the approaches of [3] and [4], this work examines the lattice of
existential formulas and their corresponding existential types. Within this framework, significant
results concerning the structure and properties of almost Jonsson sets are obtained.

The key contribution of this study lies in the application of a new double factorization technique
to the class of cosemanticness under consideration. This new approach sheds new light on the analysis
of Jonsson theories and their related subsets, building on existing results and presenting a fresh
perspective.

Research Methodology

1. Essential details regarding the study of Jonsson theories.

To grasp the content and subtleties of our subsequent discussion, it is essential to revisit the
key definitions and propositions linked to those presented in [1]. In this article, we work within
a countable first-order language, and all the theories under consideration will likewise be
countable.

Before introducing the concept of Jonsson theories, we first recall the definitions of two key
properties that play a crucial role in analyzing this class of incomplete theories.

Definition 1.

[5]. A theory T has the joint embedding property (JEP), if, for any models A and B of T, there
exists a model M of T and isomorphic embeddings f: A - M, g: B - M.

Definition 2.

[5]. A theory T has the amalgamation property (AP), if for any models A4, By, B, of T and
isomorphic embeddings f;: A = By, f,: A = B, there are M £ T and isomorphic embeddings
g1:B1 > M,g,: B, = M,suchthat g, o f; = g, ° f5.
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The primary focus of this article revolves around the concept of a Jonsson theory.

Definition 3.

[5]. A theory T is said to be a Jonsson theory if:

(i) T has at least one infinite model;

(ii) T is an inductive theory, meaning it can be axiomatized by V3-sentences;

(iii) T has JEP (joint embedding property), i.e. any two models of T can be combined into a larger
model of T;

(iv) T has AP (amalgamation property), i.e. guarantees that for any three models of T, where two
extend the third, there exists a larger model into which both extensions can be embedded consistently.

The study of Jonsson theory has been a subject of interest and recognition for many years.
This framework, which captures the core methodologies and their applications in exploring
various aspects of Jonsson theories, is detailed in the works [6]-[16].

The following definition introduces an important concept: an existentially closed model
within the class of models of a Jonsson theory. When an existentially closed model is also
algebraically simple, it gives rise to a particularly interesting class of Jonsson theories. This
combination of properties contributes to the structural richness and definability of the theory,
making it a key area of study in the model theory of Jonsson theories.

Definition 4.

[5]. Let M be a structure and N 2 M. A model M of theory T is existentially closed in N, if
for any tuple @ € M and any quantifier-free formula f (X, y) of language M, the following holds:
if N e (3y)f(@a,y),then M = (3y)f(a,y).

This property reflects the closure of M under existential quantification within the extension N.

One of the syntactic invariants of a Jonsson theory is its center. This center serves as a key
structural element in understanding the theory and its associated models, often reflecting
important properties related to the theory’s definability and consistency. Let us give some
definitions regarding the Jonsson theories.

Definition 5.

[17]. A model C; of the Jonsson theory T such that |C;| = 2¢ is said to be a semantic model,
if it is w*-homogeneous-universal.

Definition 6.

[18]. T* denotes the center of a Jonsson theory T. It is defined as the elementary
theory corresponding to its semantic model C7, meaning that T* is the complete theory that fully
describes the model Cr. Formally, we can express this as: T* = Th(C7), where Th(Cy) is the theory
of the model Cr, consisting of all the sentences that are true in Cr.

Definition 7.

[5]. Let T be an arbitrary theory of the language L. A theory T’ is called a model companion
of T, if it satisfies the following conditions:

(i) Mutual model-consistency: It means that any model of T is embedded in the model of T’
and vice versa;

(i) Model-completeness: T’ is model-complete, meaning that for any two models B; and B,
of T', if By is a submodel of B,, then B; is an elementary submodel of B,. In simpler terms, any
embedding of one model into another is elementary, preserving the truth of all formulas.

The concept of model completeness is intrinsically connected to the idea of mutual model
consistency for the theory in question.

Definition 8.

[5]. Let T be any theory. A theory T#, referred to as a #-companion of T, is a theory of the
same signature if:

(i) (T*)y = Ty: The universal consequences of T# are identical to those of T’

(ii) if Ty = Ty, then T# = (T")*: The #-companion is uniquely determined by the universal
consequences of T
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(iii) T y5 € T*.

It is evident that a model companion is also a #-companion of T. This implies that the model
companion satisfies the conditions required for a T#-companion, including:

(1) Identical Universal Consequences: The universal consequences of T and its model companion
coincide, i.e., T'y = Ty.

(i1) Inclusion of Existential Consequences: The model companion encompasses all the existential
consequences of T, ensuring consistency with T while extending its structure.

This dual compatibility confirms that the model companion meets the broader requirements of
a T*-companion.

Remark 1. When we state that T', = Ty, it means that every model of T can be embedded as a
substructure within a model of T', and conversely, every model of T’ can be embedded as a
substructure within a model of T'.

Moreover, T’ is a model companion of T if and only if it is also a model companion of Ty,.

Proposition 1. [5]. Let a theory T be an arbitrary theory. Then T has a model companion if and
only if the class of existentially closed models of Ty, is an elementary class, and if a model companion
of T exists, it is unique and is coincides with the theory of existentially closed models of Ty,.

Additionally, Robinson’s work demonstrates the concepts of finite forcing and the forcing #-
companion. Robinson's result in [19] shows that if a theory in a countable language satisfies JEP,
then this theory has a forcing #-companion that is complete.

The theorem below establishes that every Jonsson theory T has a forcing #-companion, and
that this companion is a complete theory.

Theorem 1.

[5]. If T satisfies JEP, then the forcing #-companion T# will be complete.

The theorem highlights that the simultaneous existence of all interpretations of the #-companion
is intricately connected to the existence of a model companion.

This means that if a model companion exists for T, the different interpretations or versions of the
#-companion is closely tied to the existence of a model companion. In simpler terms, the existence
of a model companion guarantees that the #-companion can be well-defined and consistent across
different interpretations.

In addition to the model companion, other types of companions are crucial in the analysis and
understanding of Jonsson theories. These include the forcing companion, the existentially closed
companion, and the Kaiser hull (the maximal V3-theory that is mutually model-consistent with
T). The Kaiser hull is particularly notable for its close relationship with the companion that
characterizes the class of models that are existentially closed with respect to the given theory. It
is also related to the companion that defines the class of generic models when investigating the
forcing companion of the theory.

The natural interpretations of the #-companion T# include the following theories:

(i) T~ is the center of the Jonsson theory 7,

(i) T' refers to the forcing companion of the Jonsson theory 7,

(iii) T™ denotes the model companion of the theory 7.

(iv) T® = Th(Er). T® represents the existential closure companion, specifying the set of
existentially closed models of T, with E+ denoting the class of all existentially closed models within
the theory T.

If E; stands for the class of T-existentially closed models of an inductive theory T, then E is
guaranteed to be non-empty, as established in [18].

In the study of Jonsson theories, the class of perfect Jonsson theories holds a special
significance. These theories are particularly important because they exhibit a high level of
structural regularity and satisfy key conditions that make them central to understanding the
broader class of Jonsson theories. Perfect Jonsson theories are often characterized by their well-
behaved lattices of existential formulas, model-theoretic properties, and their ability to interact
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with other important concepts such as the #-companion and forcing companions.

Definition 9.

[18]. A Jonsson theory T is said to be perfect, if every model of T should be sufficiently
saturated with respect to the model companion T, meaning it closely reflects the structure defined
by T*.

It turns out that the semantic model of a perfect Jonsson theory is closed under existential
quantification, meaning that the model satisfies the property that any system of existential
formulas that can be satisfied in any larger model of the theory can also be satisfied within the
model itself.

Lemma 1.

[18]. Let Cr be the semantic model of a Jonsson theory T. Then C; is existentially closed model
of T.

The following theorem offers a criterion for determining whether a Jonsson theory is perfect:

Theorem 2. (Criterion of Perfectness).

[18]. Let T be any Jonsson theory. If T is perfect, then T* is the model companion of theory
T, and vice versa.

In the case of a complete Jonsson theory, the concept of a companion (whether it's a #-companion,
model companion, or other) is identical to the center of T.

Corollary 1.

In the case of a perfect Jonsson theory T, the #-companion coincides with the center of T,
meaning T# = T*.

The concept of algebraic simplicity generalizes the notion of a simple model. It is defined by the
fact that not every theory has an algebraically simple model. A general criterion for the existence of
algebraically simple models has not yet been established. Additionally, the concept of a rigid model
is closely related to algebraic simplicity, as both are concerned with specific structural properties of
models in the context of a given theory.

Definition 10.

[20]. A model of T is called algebraically prime if, for any other model of T, there exists
an isomorphic embedding of the algebraically prime model into the other model.

Algebraically prime models are highly embedded and play a key role in understanding the
structure of models of a theory.

Definition 11.

[21]. A model M of the signature of given theory T (called a structure M in this context) is called
a core model if it is isomorphic (structurally identical) to the unique substructure within every model
of T.

Definition 12.

[18]. A theory T is said to be an existentially prime if both classes Er and AP are non-empty and
have a non-empty intersection.

The following concept, introduced by A. Robinson, is closely connected to all the theories
discussed above.

Definition 13.

[22]. A theory T is called convex if, for any model & &= T and any collection {8Bj|i € [} of
substructures of U, where each B; & T, the intersection N;¢; B; is also a model of T, provided it is
non-empty. A theory T is strongly convex if the intersection is always non-empty and still a model
of T.

Let T be a theory that is strongly convex, Jonsson, and perfect, and that is complete for existential
sentences in the language L. The combination of these properties ensures that T has a well-defined
structure of models, with a unique core model and robust behavior in terms of existentially closed
models and intersections of substructures. The completeness for existential sentences ensures
that T captures all existential properties in its models, further strengthening the theory's foundational
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aspects.

Definition 14.

[17] A pregeometry (or matroid) (X, cl) is a set X with a closure operator cl: B(X) — B(X), where
B denotes the Boolean of a set such that forall A € X and a,b € X:

a) (Reflexivity) A € cl(A).

b) (Finite character) cl(A) is the union of all c/(A"), where A’ runs through all finite subsets of A.

¢) (Transitivity) cl(cl(A)) = cl(A4).

d) (Replacement lemma) a € cl(Ab)\cl(A) = b € cl(Aa).

A set A is called closed (or cl-closed) if A = cl(A). Note that the closure cl(A) of the set A is the
smallest cl-closed set containing A. Therefore, the pregeometry is defined by a system of cl-closed
subsets. The operator cl(A) = A for all A € X is a trivial example of pregeometry. Three standard
examples from algebra: vector spaces with a linear closure operator, for a field K with a simple field
F, with respect to an algebraic closure c[(4) = F(A)*9 N K, and for the field K of characteristic p,
the p-closure is given by cl(4) = KP(A).

Later in the article, by the theory of T, we mean a strongly convex, perfect Jonsson theory, which
is complete for existential sentences in the language L. The framework involves a pregeometry [17]
defined by the closure operator cl on the set of all subsets of Cy.

In a strongly convex, Jonsson, and perfect theory T, the concept of a Jonsson set A is closely tied
to the structure of existentially closed submodels of semantic models. The set A is definable within
the theory T, and its closure under the closure operator clresults in an existentially closed
submodel N, which captures the model-theoretic characteristics of the set A. This interplay between
definability, closure, and existential closure is crucial for understanding the internal structure of
models in the context of a Jonsson theory.

The notation Thy5 (N) refers to the sets of all V3-sentences, that are true in the model N. These
sentences are those that are universally quantified and involve existential quantifiers in their
structure. The collection Thy3(N) represents the set of all sentences that describe the properties
of the existentially closed model N in terms of the theory T, specifically focusing on the
existential aspects of the model.

Definition 15.

[17] The Jonsson set is a subset A of the semantic model C of the Jonsson theory T, which has
special properties that make it possible to study in detail the structure of the models of this theory.

Definition 16.

[4]. The fragment Fr(X) of the Jonsson set X is a Jonsson theory obtained as a V3-sentences
which are true in the model N which is a closure of this set, such that Fr(X) = Thys(N).

The following definition provides a crucial extension of the concept of a Jonsson set.

Definition 17.

[1]. A set X is called almost Jonsson if it fulfills these conditions:

1) X is a definable subset of Cr, where Cr is the semantic model of Jonsson theory T;

2) cl(X) =M € Mod(T).

Furthermore, Thys(M) = M° = Fr(X), and M° € JSp(Cy), where JSp(Cr) denotes the
Jonsson spectrum of Cr, i.e. JSp(Cr) = {T'| T' is a Jonsson theory and C; = T'}.

This concept can be illustrated by an example of an arbitrary abelian group, which turns out
to be the closure of some existential formula defining an almost Jonsson set in this abelian group.

The concept of normality for a Jonsson theory is defined for a class of theories where any
fragment of their semantic models belongs to the Jonsson spectrum of C7 of the given Jonsson
theory.

The following definition describes specific subsets of the semantic model of the given Jonsson
theory. These subsets are important in understanding the structure and behavior of the models of
the theory, particularly in relation to how they fit into the broader framework of the Jonsson
spectrum and the properties of T.

34




Abaii amvinoasvr Kaz¥I1Y-niy XABAPIIBICHI, « Qusuka-mamemamura ulavimoapuly cepuscol, Ne3(91), 2025

Definition 18.

[1]. The Jonsson theory T is said to be normal if for any X € Cr, such that
cl(X) =M € Mod(T),Fr(X) = M° € JSp(Cy) and C,o =<3, Cr, where Cpo is a semantic
model of M°.

An example of a normal theory is the universal theory of all unars. This theory is characterized
by the fact that it has an empty list of axioms and is Jonsson.

These subsets are characterized by the fact that the formula that defines them has Morley
rank [17]. Morley rank is a key concept in model theory that measures the complexity of
definable sets. The following six properties are actually six axioms that define the Morley
rankability properties, which govern how sets and their definability can be ranked in terms of
complexity.

Let us introduce the concept of a family of regular subsets of the semantic model Cr, denoted by
Reg(Cr).

Definition 19.

A subset X; € Cr is called regular if X; satisfies the following properties:

1) Foreach i € I the inclusion X; € Reg(Cr) holds;

2) The set Reg(Cr) is closed under finite Boolean combinations, i.e. from the inclusions
AB < C}, A B € Reg(Cy) it follows that A U B € Reg(Cy),A N B € Reg(Cy) and
CP/A € Reg(Cr);

3) The set Reg(Cr) is closed under the Cartesian product, i.e. from the inclusions A,B €
Reg(Cr) it follows that A X B € Reg(Cr);

4) The set Reg(Cr) is closed under the projection, i.e. if A € CF}*™, A € Reg(Cy), m,(4)
is the projection of the set A onto C}, then ,,(A) € Reg(Cy);

5) The set Reg(Cr) is closed under specialization, i.e. if A € Reg(Cr),A € C}*™ and c €
Cr,then A(c) = {(c,@) € A} € Reg(Cr);

6) The set Reg(Cr) is closed under permutation of coordinates, i.e. if A € Reg(Cy),A S
Ct, and o is a permutation of the set {1,...,n}, then 6(4) = {(a4,...,a,) € A} € Reg(Cr).

In the context of a Jonsson theory, the regular subsets of the semantic model Cr are subsets that
exhibit specific properties in relation to the closure operator and definability. Regular sets are those
that satisfy closure under various set-theoretic operations, preserving their regularity in the
context of definable subsets of Cy.

Lemma 2. Let us consider a subset of existentially closed models K from a class of models of
normal Jonsson theory T and the set of all V3-sentences true in the models of K. Then, the theory
Thy5(K) is a normal Jonsson theory.

This is a useful result in model theory as it demonstrates how properties of existential closure
and V3-sentences are preserved in the context of Jonsson theories.

Proof. Let K € E+, T be a normal Jonsson theory. Since T is a normal Jonsson theory, then T
has JEP, then according to Theorem 3 VA, B € E; = T°(A) = T°(B).

Theorem 3. [23] Let there exist two existentially closed models A and B of a theory T that satisfy
JEP, then any V3-sentence true in one model must also be true in the other model.

This follows from the preservation of existential closure and the properties of the JEP, ensuring
that existentially closed models of a Jonsson theory (and in general, models satisfying the joint
embedding property) share consistent truth conditions for V3-sentences. And now let us define the
concept of the Kaiser class of models for the arbitrary of the Jonsson theory. The Kaiser class
Krp is defined as K = {A € ModT|Thy5(A) is a Jonsson theory}.

Proposition 2. 1t is clear that Er € K.

l. Kr #@(GfT =T"=Th(Cr) and T is perfect then K; = Ey).

2. VM <€ Ky, Thy3(M) is a Jonsson theory.

The Jonsson sets and almost Jonsson sets play a key role in the generation of fragments in the
context of a normal Jonsson theory. Specifically, when a Jonsson theory is normal, these sets
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generate fragments from the models of the Kaiser class of the theory. These generated fragments
are cosemantic with the Jonsson theory under consideration.

2. Classification of fragments by categoricity.

Definition 20.

[20] ¢ is a A-formula with respect to the theory T if it can be expressed in terms of two existential
formulas 1, and Y, that are both logically equivalent to ¢ in the models of T.

Existential formulas are often called 3-formulas.

Therefore, A -formulas are invariant under embeddings between models of theory T. Along with the
3-formulas, they constitute the main classes used to define relations in algebraically prime models.

Definition 21.[20].

i) (4,a9,a4,...,a4_1) =r (B, by, byq,...,b,_1) means that the formula ¢ is true in A with
parameters @ if and only if it holds in B with the corresponding parameters b.

(i) (A,a@) = (B, b) holds if both of the following conditions are satisfied:

1. (4,a) =, (B,b);

2. (B,b) =r (4,a).

As classes, we will consider either A or 3.

Definition 22.

[20]. A formula ¢(xq,x5,...,Xy,) is said to be complete for I'-formulas if the following
conditions hold:

(i) ¢ must be consistent with the theory T.

(i) for every formula Y (xq, x5,...,x,) in the class I' that has the same free variables as ¢,
one of the following must holds: T k& VX(¢ — ), which means that T proves
that ¢ implies 1 for all possible values of the variables X, or T proves that ¢ implies the negation
of Y for all values of X, T E VX(¢p — —).

Definition 23.

[20]. A model 2 is called a I';, I',-atomic model of a theory T if the following conditions hold:
A = T, which implies that all sentences in T are satisfied in 2; and for every finite n-tuple of
elements from the universe of 2, there exists a formula 1 (x) € I'; such that Y (x) is complete
for I',-formulas in the sense that, for any formula 6 (X) € I,, either T U {{)(X)} E 8(X) or T U
{Y(¥)} E =6(X) and Y (X)} holds for a in A.

Let M be a perfect normal strongly convex fragment complete for existential sentences. Then the
following properties holds:

(i) M?O is an existentially prime normal theory;

(ii) in particular, M° has a core model. By [10], this core model is (A, 3)-atomic.

To establish the groundwork for Theorem 9, we introduce the following key definitions and
results:

Theorem 4. (Saracino) [24]. Let T be a complete theory in a countable language. Then the
theory T is w-categorical if and only if the theory T has a model companion T*, and T" is w-
categorical.

Definition 24.

[20]. 2-nice and X *-nice algebraically prime models:

(i) A model U is called a 2Z-nice algebraically prime model of the theory T if U is a countable
model of T and for every model B of T and for any tuple @ in A and b in B, if
(4,ap,a4,-..,an_1) =3 (B, by, bq,...,by_1) (i.e., the F-quantifier embedding relation holds
between the tuples in the two models), then for every a,, € A, there exists a corresponding b,, €
B such that: (4, aq,a4,...,a,) = (B,bg,bq,...,by).

(i) A model U is called a X™*-nice algebraically prime model of T if U is countable model and for
every model B of T, every n € w, and for all agy,aq,...,an_1 € A, by, b4,...,b_1 €EB, if
(4,ap,a4,-..,an_1) =3 (B, by, bq,...,by_1), then forevery a,, € A there exists some b,, € B such
that (4, ag, a4,...,a,) =3 (B, by, by,...,by).
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Remark 2. As established in [20], an 3-complete, perfect, strongly convex fragment both
possesses a core model and serves as a core model itself. Moreover, the (A, 3)-atomicity of this
fragment implies (X, 2')-atomicity, as shown in [20].

This is a stronger atomicity condition that indicates the fragment is highly structured in terms of
both existential and universal quantification, making it a foundational building block for the model-
theoretic analysis of Jonsson theories.

Theorem 5. [20]. If two models of T are countable and (X, X)-atomic, then these two models
are isomorphic.

To proceed with the proof of Theorem 13, we need to introduce several important concepts
and results that will help structure the argument.

Definition 25.

[20]. A theory T is said to satisfy Ry if for any existential formula ¢ (x) consistent with T there
exists a formula Y (X) € A, also consistent with T, such that T = ¢ — ¢.

Definition 26.

[20]. A countable model 9t of a theory T is called countably algebraically universal if, for
every countable model 9t of T, there exists an isomorphism 9t — .

Theorem 6. [20]. Let T be a V3-theory complete for existential sentences, and assume that T
satisfies R;. Then, there is an equivalence between the existence of models with certain atomic
properties — such as an algebraically prime model, (3, A) -atomic model and (A, 3) -atomic model,
A-nice algebraically prime model and the existence of a unique algebraically prime model.

The equivalence of the conditions discussed above highlights that a complete V3-theory that
satisfies R; exhibits strong and consistent structural properties, particularly in terms of the
atomicity and uniqueness of its models.

M. Morley’s criterion (see [25]) for the w,-categoricity of a complete theory is a well-known
result in model theory. The criterion provides a necessary and sufficient condition for a complete
theory to be categorically unique in all uncountable models, which is a significant aspect of the
theory’s structure and its models.

Definition 27.

[20]. A model Mt is said to be a proper prime elementary extension of It if M Z N and for any
model | such that & = N, it follows that M < K.

Next theorem provides a criterion for wq-categoricity based on the existence of proper prime
elementary extensions, linking model-theoretic structure to categoricity.

Theorem 7. (Morley) [25]. If T is w;-categorical, then every countable model of T can be
extended to a proper prime elementary extension. Conversely, if every countable model of T has a
proper prime elementary extension, then T must be w-categorical.

In the framework of Jonsson theories, we offer an analogous version of Definition 27. Both deal
with prime extensions, but Definition 27 applies to elementary extensions in general model theory,
while Definition 28 specifically addresses extensions in Jonsson theories.

Definition 28.

[18]. Let M and It be models from Er, where 3t & . We say that It is an algebraically
prime model extension of M within E7 if every isomorphic embedding of M into any model
K € E; can be extended to an isomorphism Jt — K.

To refine Theorem 7 within the context of studying fragments of Jonsson theories, we need
to focus on the specific structure of Robinson theories, which are universally axiomatized
Jonsson theories. These theories have a set of key properties, including the fact that they are w-
categorical and w-stable, which helps us refine the notion of Morley rank.

Regular subsets of the semantic model C; play a significant role in understanding the properties
of the theory T. These subsets often represent well-behaved or structured portions of the model.
The Morley rank provides a measure of complexity or definable structure within a model. It assigns
a rank to definable sets, giving insight into their size and behavior in the context of a complete theory.
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In Jonsson theories, fragments (subsets of the theory with specific logical properties) often exhibit
interesting relationships with the model-theoretic notions like stability and rank.

The Morley rank of regular subsets in Cr helps analyze these fragments, providing a structured
way to understand their properties within the semantic model.

Results of the study

In this section, we consider the issues related to the categoricity of the considered fragments
of normal theories. Moreover, the fragments are generated by almost Jonsson regular subsets of
the semantic model of the regarded Jonsson theory.

Let T be a normal Jonsson theory. And let A be a subset of the semantic model Cr, A is an
almost Jonsson set, meaning cl(A) = M € Ky, where K - the Kaiser class of the normal fixed
Jonsson theory. Thys(M) = Fr(A) = M°.

The following points describe the properties of these fragments.

Lemma 3. The fragment M° is a Jonsson theory.

This result is proven in the reference [18].

Let M°" be the #-companion of the fragment M°.
Theorem 8. If cl(A) € Ky, then the following conditions are equivalent: M is perfect if and

only if M 0% is axiomatized by V3-sentences.

This result is extracted in [18].

Theorem 9. Let cl(A) € Kr. Then the following conditions are equivalent:

(i) M? is perfect,

(ii) M° has a model companion.

The proof of this equivalence follows from the criterion of perfectness.

The subsequent statement is easily verified.

Lemma 4. Let cl(A;) = My, cl(A;) = M,, and both M;, M, are elements of the class K.
Suppose M;, M, are Kaiser hulls of the normal Jonsson theory. Then M} and M3 are mutually
model consistent is equivalent to the equality of their #-companions.

Proof. If M9 and M9 are mutually model consistent, then (M?), = (M), and by the definition
of the #-companion, the #-companions will be equal. Conversely, if the #-companions of A, and
A, coincide, then (M?)y = (M?)y. By part (i) of the definition #-companion, MY = (M), and M? =
(M%)y. Consequently (MY)y = (M2)y. Thus, MY and M2 are mutually model consistent.

It is well-known that the concepts of model completeness and the completeness of a theory do not
generally coincide. However, Lindstrom’s theorem [5] establishes a connection between these two
concepts. The following theorem is related to Lindstrom’s theorem on model completeness.

We are considering Jonsson fragments, specifically M°, within a framework where cl(A) € Kr.
Here, cl(A) represents the closure of a set A, and A is a subset of C; of a Jonsson theory T. The
theory T is existentially prime, strongly convex, and normal. These properties ensure that T has
certain robust closure properties, particularly under intersections and embeddings of models.

Theorem 10. Let the closure of the set A, denoted cl(A) belongs to certain class Ky, and let M°
be a perfect normal Jonsson theory. Then M° is complete if and only if it is model complete, and
vice versa.

Proof. Firstly we note that, from the perfectness of an existentially prime strongly convex Jonsson
theory the perfectness of a fragment follows.

(i) = (ii) Assuming M° is complete, we need to show that it is model complete.

Let M° be a complete fragment of the Jonsson set A. Consider the central completion of M°,
denoted (M®)*. Since M°S(M®)* and M is complete, we have M°=(M®)*. The model (M°)* is
the center of the fragment and is part of the normal Jonsson set, which is existentially prime and
strongly convex. By the criterion of perfectness, M is aperfect fragment. Therefore,
the center of M° coincides with its model companion, which is model complete.
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Thus, M° is model complete.

(ii) = (i): The proof uses JEP of fragment M° and the model completeness of (M%)¥.

Suppose the opposite, i.e. M?isnot complete, then there is a sentence ¢ such that
neither ¢ nor —¢ is deducible in M°. This would lead to two inconsistent sets: M° U ¢ and M° U
—¢. By the Joint Embedding Property (JEP), there would be two models, A; and A, satisfying M° U
@ and M° U @, respectively. These models A; and A, can be embedded isomorphically into a
common model B by elementary embeddings f; : A, = B and f, : A, — B. However, this leads to
a contradiction because B £ ¢ A —¢. Therefore, M° must be complete.

The theorem below essentially says that under the conditions described, the model U will satisty
all these atomic and nice properties, showing the interaction between them in this context.

Theorem 11. Let M° be an 3-complete, perfect, normal, strongly convex Jonsson fragment,
where cl(A) belongs to Ky (means that the closure of some set A under the closure operator cl is a
model in the class K; of T-models) of some normal Jonsson set A4, and let A be a countable model
of the theory M. It follows that (i) = (ii) and (ii) = (iii), where:

(1) A is (X, 2) —atomic,

(i)  WAis X*-nice,

(i)  Wis existentially closed and X-nice.

The proof follows from Remark 1 and [19].

Theorem 12. Consider M° as a V3-complete, perfect, normal, and strongly convex Jonsson
fragment of a normal Jonsson set A, where cl(A) € K. Then the following statements are
equivalent: if the #-companion of a Jonsson fragment M° is w-categorical, then M° is w-
categorical, and vice versa.

Proof. (i) = (ii) Assume that (M°)* is w-categorical. From Theorem 1 (part ii), (M®)¥* is
complete. By Theorem 4, (M°)* has a unique w-categorical #-companion, denoted (M°)¥. Since
(M°)* is model-consistent with M?, it follows that the models of (M°®)*  must be also consistent
with M°. Moreover, the model-completeness of (M°)# ensures that every formula in the
language of (M 0)“‘Uis equivalent to an 3-formula. Applying Robinson’s theorem on the
uniqueness of model companions, and the criterion of perfection for a normal Jonsson theory, it
follows that (M?)# = (M®)*'. Since (M®)*" is w-categorical, it has a unique countable model
N, which is countably saturated. This model N belongs to the class of models of M°, as
Mod(M®)* € Mod(M 0)#’. By the perfection criterion of a normal Jonsson theory, N is also X*-
nice-model. Furthermore, Mod (M°)# = K*, where K* contains a unique (up to an isomorphism)
countable model N, which is (L, L) —atomic as defined in Definition 24, where L is the full
language. Therefore, N is also a (X, X;)-atomic model of (M®)# due to the model-completeness
of (M®)* (since (M)* = (M°)*"). By the 3-completeness of M°, N is a (£;, %, )-atomic model
of (M°)*. Finally, by Theorem 11, N is a X*-nice-model. Let B an arbitrary countable model of
M° so B € Mod(M°)* and cardB = w. Since M° is 3-complete, it follows that N =5 B (this
serves as the induction base). By the definition of X*-niceness, we can inductively obtain
(N,a)gen =3 (Nq, f (@))qen, Where f is a mapping such that f(a) = a for any a € N. Hence,
(N,a)gen =3 (Ny, f (a))gen > which implies N <5 B. Thus, B is a (X, 21)-atomic model. By
Theorem 5, B = N. Since B was arbitrary, the fragment M° is w-categorical.

(ii) = (i) Now assume that M° is w-categorical. Suppose, for the sake of contradiction, that
(M®)* is not w-categorical. If (M°)* were not w-categorical, there exist non-isomorphic
countable models N and B of (M°)*. However, since M° € (M°)#, the models N and B would
also belong to the class of models of M° (i.e., N, B € ModM?P). This contradicts the assumption
that M is w-categorical. Thus, (M°)* must also be w-categorical.

Theorem 13. Let cl(A) belongs to K7, where A is a regular set. Let M° be Jonsson fragment,
which is an existentially prime, perfect normal Jonsson theory that is complete for the existential
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sentences of a Jonsson universal theory satisfying R;. Then the structure (M°®)* is w,-categorical if
and only if any countable model in K,,0 possesses an algebraically prime model extension in
K0, and vice versa.

Proof. (i) = (ii) Let (M®)* be w,-categorical. By Morley’s theorem on uncountable
categoricity, (M°)* is perfect. Then, by the criterion of the perfectness of a Jonsson theory,
(M®)* is a model complete theory, and we have Mod (M°)* = K,,0 . Since (M°)* is model-
complete, any isomorphic embedding between its models is elementary. Moreover, as (M°)*
is a complete theory, applying Theorem 2 yields the required statement.

(ii) = (i) By Lemma 3.11.2 of [ 18] applied to the semantic model € of an existential prime
perfect Jonsson theory M°, we know that € is w-universal. Typically, its cardinality exceeds
countability. Thus, we consider a countable elementary submodel © € €. Since € is existentially
closed (by Lemma 3.11.3. of [18]), the submodel D is also existentially closed. Consequently, D
is countably algebraically universal. By the assumption that M° is existentially prime, M°,
possesses an algebraically prime model 2,. We now construct a chain of algebraically prime
model extensions {2s}:

(i) Define UAs,; as an algebraically prime model extension of Ug;

Let A =U{Ay6|6 < w;}. Suppose B E M°? and cardB = w,;. To prove B =~ A,
decompose B into a chain {Bs|d < w,} of countable models. This decomposition is possible
due to the existential prime Jonsson theory M°.

We now define a function g: w; — w4 and construct a sequence of isomorphisms {fy :
Ays = Bs|0 < 6 < w,} by induction on §:

(i) go =0and f, : Uy = B.

(i) gA =U{gd|6 < A} and f; =U {f5]|6 < 1}.

(iii) fs41 1s equal to the union of the chain { f5y|y < p where p is determined by induction
ony.

V) for1 = for f =V {f516 < A3

(v) Suppose that fi: W54y 2 Bssq- If f5y+1is a mapping onto, then p = y.
Otherwise, by virtue of the algebraic primeness of ;54,41 We can continue f5y+1 to

y+1,
s+1 " Ags+y+1 = Bs+1-

(vi) g(6 +1) = gd +p.

It follows that f = U {f5|6 < w,} is an isomorphism between 2 and B. By Theorem 12,
since B was an arbitrary model of M°, and A is the unique algebraically prime and
existentially closed model (by assumption and construction), K0 has a unique model of
uncountable cardinality. Therefore, the semantic model of an existentially prime Jonsson
theory M° is saturated, which implies that M is perfect. Consequently, Mod (M°)* = K0,
and (M®)* is w,-categorical.

Discussion

This work highlights the significance of w;-categoricity as a central property that connects the
algebraic, existential, and structural aspects of existentially prime Jonsson theories. This relationship
provides a unified framework for systematically studying the logical properties of these theories,
offering both theoretical and practical insights for future research in model theory and the exploration
of Jonsson theories.

Conclusion

The results presented reveal a notable connection between the model-theoretic properties of
Jonsson theories and their respective fragments, especially in terms of w-categoricity, algebraic
primeness, and existential completeness. This connection enhances our understanding of how these

40




Abaii amvinoasvr Kaz¥I1Y-niy XABAPIIBICHI, « Qusuka-mamemamura ulavimoapuly cepuscol, Ne3(91), 2025

properties influence the structure and behavior of models in Jonsson theories, demonstrating that w;
-categoricity guarantees the uniqueness of countable models, while algebraic primeness and
existential completeness ensure strong closure properties for these models under extensions and
embeddings. Together, these properties provide a comprehensive framework for studying the logical
foundations of the theory. Specifically, we have shown the equivalence of w;-categoricity and
algebraic primeness, perfectness and model-completeness, and the V3-complete, perfect, normal, and
strongly convex Jonsson fragment of a normal Jonsson set A. This analysis not only deepens our
understanding of the structure of Jonsson theories but also paves the way for future research on the
connections between algebraic and existential properties of such models. Furthermore, the results
highlight the importance of w;-categoricity as a central concept for linking various model-theoretic
aspects, offering new insights into the behavior and classification of models within these theories. In
sum, the work emphasizes that w1-categoricity serves as a unifying property for understanding the
model-theoretic behavior of existentially prime Jonsson theories, linking their algebraic, existential,
and structural characteristics within a coherent and elegant framework.

All the essential concepts and statements related to these notions, which were not defined or
discussed in the text of this article, can be found in the following list of references.
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