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Abstract

In this paper, the problem of global optimization of a smooth function of several variables given on a cuboid is
considered. The search for a solution is carried out using an auxiliary function obtained by a special transformation of the
objective function. An auxiliary function is a function of one variable, the zero of which coincides with the value of the
global minimum of the objective function. Therefore, to solve the problem, the method of dividing the segment in half
was used. The results of this work were revealed on the basis of a large number of computational experiments conducted
on test functions using the proposed method. These results are formulated in the form of three theorems and theoretically
proved. In the first theorem, conditions are defined that indicate the interval in which the value of the global minimum is
located. The second theorem expresses the convergence of the iterative sequence to the value of the global minimum. In
the third theorem, the linear convergence rate of the iterative procedure is established. As an example, the multiextremal
Eckley function of two variables defined in a square centered at the origin is considered.

Keywords: global optimization, optimization methods, global optimization algorithms, global search, horizontal
cross-section method, convergence of the global optimization method, auxiliary function.

Axoamna
K. C. Tymkywesa
K. ’Kybanos amuvinoasvl Axmobe oyipnix ynugeepcumemi, Axmobe ., Kazaxcman
KOMEKIII ®YHKIHUS HET3IHJE I'TIOBAJIbbI OHTAMJIAHJIBIPYFA KECIHAIHI
KAK BO6J1Y 9ICIH KOJJJAHY

By sxympIic kybomnara OepinreH OipHele alfHBIMAIBICHL 0ap Teric (YHKIUSHBIH TII00ANbIBl OHTAMIAHABIPY eceOiH
kapacteipanbl. Illemrimai i3aey OepinreH MakcaTTbl (YHKIHSHBI apHAHBl TYPJICHIIPY apKbUIBI ajbIHFAH KOMEKIII
(YHKOUSHBL KONJaHYMEH JKy3ere acamel. Kemekmii QyHkmus Oip aiHBIManbiFa Toyenmi. OHBIH HeJI MakKcaTThl
(YHKIUSHBIH TI00a7TbI6I MUHUMYMBIHBIH MOHIHE CoWKec Keleldi. MUHUMYMABI Ta0y VINiH KeCiHAiHI KaK 0exy oaiciH
Konmaneuael. EcenTey TokipuOenepi omiCTIH AYPBICTBIFBIH KOPCETTi. Op TYPIi TECTTIK (QYHKIMSIAPIBIH TI00aThIbI
MHUHAMYMBI aHBIKTIIBl. Byl HOTHKellep yII Teopema TypiHIE TYKbIPBIMIAIFaH JKOHE TEOPHSJIBIKTYPFbIIAH
JeneneHred. bipini TeopeMa rino0alibibl MUHUMYMHBIH MOHI JKaTKaH apajibIKThl KOPCETETIH IapTTap bl aHbIKTA IbI.
ExiHmii TeopeMa HUTEpalMsIBIK Ti30€KTiH [I00ANbIsl MHHAMYM MOHIHE >KMHAKTAJIATHIHBIH KepceTemi. Y IIiHIII
TeopeMasia UTEePALMSUIBIK YPIICTIH KUHAKTBUIBIFBIHBIH CBI3BIKTBIK IKBULIAMJBIFBI ecenTeni. Mebicall peTiHae eki
allHBIMaJIBIJIaH TOYEJ/Ii KON SKCTPeMalIbl KBaJpaTTa aHbIKTaIFaH QyHKIUS Kapajbl.

Tyiiin ce3mep: r100anbIsl OHTAWIAHIBIPY, OHTAMIAHIBIPY JICTEPi, TI00aTbIbI OHTAWIAHIBIPY AITOPUTMICPI,
riro0abIpl MUHUMYMBI 1371y, KOJNICHEH KUMa 9Jici, TJI00ANbIbl OHTAMIAHIBIPY SMICiHIH KWHAKTBUIBIFBI, KOMEKIIT
GyHKIHA.

K.C. Tymkywesa
Axmiobunckuil pecuonanvhulil yHueepcumem um. KKybaunosa, 2. Akmobe, Kazaxcman
HNPUMEHEHUWE METOJA JEJEHUSA OTPE3KA IIOIIOJIAM
B I''TOBAJIBHOM ONITUMHU3AIIAA HA OCHOBE BCIIOMOT ATEJIbHOM ®YHKIIUA

Annomayus

B pabore paccMmaTtpuBaeTcs 3amadya TIO0ANPHOW ONTHMH3ALUUHU TIAAKOW (DYHKIUH HECKOJBKHX ITEPEMEHHBIX,
3aaHHOM Ha KyOowue. [IouCK pelreHust OCYIECTBISCTCS C IMOMOIIBI0 BCIIOMOTATENFHON (DYHKIIMH, TOTyYCHHOM ITyTeM
ocoboro mpeoOpa3oBaHus IelieBoi (YHKIUU. BecrnoMoraTenbHas (yHKIHS SBISIeTCS (QYHKIMEH OJHOW HEPEeMEHHOM,
HOJIb KOTOPOW COBMAgacT CO 3HAYCHHEM IJIO0ATBFHOIO0 MHUHHMYyMa MeineBoi ¢yHkuuu. [losromy mns penreHus
MTOCTABJICHHOM 3aJ1a4¥ IIPUMECHSIJICSI METO/I ICJICHUS OTpe3Ka NomnojaM. Pe3yinbpraTsl HacTosIIeH paboThl OBLIH BBISBICHEI
Ha OCHOBE OOJBIIOTO YHCJIAa BBIYHCIUTEIBHBIX 3KCIICPHUMEHTOB, IMPOBEACHHBIX HA TECTOBBIX (DYHKIWSIX C TOMOIIHIO
MIPEATIOKEHHOTO METO/1a. DTH PE3yNIbTaThl CHOPMYITHPOBAHBI B BUE TPEX TEOPEM M TEOPETUIECKH JTIOKa3aHbl. B mepBoit
TeopeMe OIpeNIeICHbI YCIOBHUS, KOTOPhIE YKa3bIBAIOT Ha MPOMEXYTOK B KOTOPOM HAXOAMTCS 3HAUYCHHE TII00ALHOTO
MUHUMYMa. BTopasi TeopeMa BBIpakaeT CXOJUMOCTh MTEPAIMOHHON MOCIEA0BATEIHHOCTH K 3HAYCHHIO TJI00aIhHOTO
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MHUHUMYMaA. B TpeTI:Cﬁ TEOPEME YCTAaHOBJICHA JIMHEHAS CKOPOCTb CXOAUMOCTH HTCpaHHOHHOﬁ npoueayphl. B xauectBe
npuMepa paCCMOTpEHAa MHOI'OOKCTpEMajibHasA (byHKIlI/IH Oxin JABYX MCPCMCHHBIX, ONIPEACJICHHAA B KBaJpaTe C ICHTPOM
B Ha4aJic KOOpAWHAT.

KiawueBble c10Ba: riaodannbHas ONnTUMHU3alus, MCETOJAblI ONTUMU3AUNHU, AJITOPHUTMBbI riao0anbpHOMI OIITUMH3AalIMH,
r00aIbHEII MOUCK, METOA TOPU3BOHTAJIbHBIX CCUCHHUH, CXOAUMOCTL METOAA riao0anbHOM OIITUMU3AlIUU,
BCIIOMOrarcJjibHas (l)yHKIII/IH.

Materials and methods

The convergence of the global optimization method for multidimensional and multiextremal smooth
functions is considered in the article. Gradient optimization methods require gradient calculation and in the
case of minimum search, the starting point moves along the anti-gradient. Such actions lead us to a stationary
point, not to a global minimum. The gradient cannot overcome the maximum point. The search for the global
minimum by the gradient method is carried out by selecting a set of starting points and performing the above
actions. But this will not guarantee that the found point is a global minimum. Since the global minimum may
be in a narrow range. In the iteration method, the allowable set is divided into a grid. The value of the objective
function is calculated at the nodes. The point where the objective function takes the minimum value will be
defined as the global minimum. This algorithm is suitable if the grid step is very small. But reducing the step
increases the number of calculations of the objective function and you have to remember a lot of values.
Computational costs increase significantly if the dimension of the objective function increases.

In recent years, new improved versions of the methods described above have appeared. Zero-order
optimization methods use information only about the function itself. For example, the method of simulated
annealing [1, 2], randomized descent [3], evolutionary method [4], genetic algorithm [5], Hook-Jeeves method
[6], dichotomy method [7] and others.

First-order optimization methods use information about the function itself and information about first-order
derivatives. Such algorithms include: the parabola method, the conjugate gradient method [8], the steepest
descent method [9], the gradient method with step splitting [10] and others.

As we can see, the multidimensionality and multiextremality of the objective function is an obstacle for
numerical methods [11]. The optimization methods described above do not guarantee convergence to the
global minimum.

In [12], a new algorithm is described, which is very different from the methods described above. The search
begins with the value of the global minimum, and not with the definition of coordinates. This gives great
savings. The idea of the method is based on the search for a horizontal section of the objective function that
passes close (to the desired accuracy) with the global minimum of the objective function. The following is a
theorem and the convergence of this algorithm is proved.

Problem statement

We give a mathematical formulation in the form of an objective function f to problems from different fields
of application where it is necessary to find the smallest or largest value. So, we need to find the global optimum
of the objective function. For certainty, the problem of finding a global minimum is considered. The task of
finding the global maximum is performed similarly for an objective function with a minus sign. Let f: Q - R
be a smooth objective function

fO) = f(x1, -, %n) 1)

from n — variables. It can be multi-extreme and multidimensional. The set of valid solutionsisa Q —n
dimensional cube:

x€Q={x€eRMa <x;<b,1<j<n}
It is required to find the value and coordinates of the global minimum point (%; ). We will denote them:
y = globminf(x) 2
% = argglobminyeqf (x) = argy 3

The algorithm for finding the global minimum point consists of two parts. The first part of the task is to
find the value of the global minimum point (2), and the second part is to find the coordinates of the global
minimum (3).
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Let's explain some notation: f( X;,..., X, )— objective function, minimized function; Q — search area for

~

solutions; x(xy, x5, ... x,) vector of variables; X € Q — the point of the global minimum of the function f on
the set Q.

The results of the study

The idea of the new algorithm is radically different from the existing methods. We need to find a horizontal
hyperplane Yy =« that intersects the graph of the objective functiony = f(X,,..., X,) near the global
minimum. Such an approximation to the global minimum can be performed to the desired accuracy. To
determine the global minimum, an auxiliary function is constructed. If the objective function f(X,..., X,)
depends on n — variables, the auxiliary function will contain an n — fold integral:

by by
9(@) = [ JTF (% X ) = @] = (F (%100 %) — )]l . X, @)

&

Here y = f(X;,-., X,) — is the objective function, Q = {x € R™|a; < x; < b;, 1 < j < n} - is avalid set,
y=a is the equation of the horizontal hyperplane m — is the smoothness of the auxiliary function

g(a) eW," from Hilbert space.

The auxiliary function (4) is calculated using numerical methods, for example, using lattice cubature
Sobolev formulas with a regular boundary layer [13, 14].

The calculation of the auxiliary function, a complete description of the algorithm and computational
experiments are published in previous articles [12], [15]. Now we will prove the convergence of the new global
optimization algorithm.

Formula (4) defines the relative position of the given objective function y = f(X;,..., X,) and the
horizontal plane Y =« . The auxiliary function is always positive or equal to zero, since the function contains
the difference between the modulus of the function and the function itself.

To begin with, the interval [cy, d,] is selected, where the value of the global minimum is located.

Theorem 1.

If for the auxiliary function (4) there is equality g(c,) = 0 and inequality g(d,) > 0, then the value of the

global minimum of the function & = f (%, ..., X,) lies in the interval @ € [c,, dy).
Proof of Theorem 1.

Consider the behavior of the auxiliary function (4). If f ( Xy oo Xn) > a, then the module in (4) is expanded

with a plus sign and the value of the auxiliary function g(a) = 0.

On the other hand, this means that the graph of the objective function is above or touches the horizontal
hyperplane y = «a at the point of the global minimum. Therefore, the global minimum is located at least below
the hyperplane Yy = C,, thatis, & > c,.

Next, let's assume the opposite, that is, @ > d,,. By the condition of the theorem g(d,) > 0, hence the set
muoxkectBo Q(dy) = {(%4, ..., %) € Q| f (%4, ..., %) < dy} is not empty. Therefore, on the set Q(d,), by
virtue of the assumption & > d,, the inequality f (%4, ..., X,) < &. And this contradicts the fact that & is the
value of the global minimum, hence @ < d,. Thus, & € [cy, d,). Theorem 1 is proved.

Figure 1 shows an example of an objective function y = x?(x — 2)2(x + 1)? — 0.8x. As described above,

the value of the global minimum is between the lines y = ¢y and y=d,.

A full description of the method using the auxiliary function is described in the author's articles [12], [15].
The most important indicator of optimization methods is convergence. Consider the convergence of the
algorithm and determine the convergence rate.

It is known from Theorem 1 that if g(c,)=0 and g(d,) >0, then the global minimum ¢ is in the
segment [c,,d,].
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1]
*

Figure 1. Graph of the function y = x2(x — 2)2(x + 1)? — 0.8x

c, +d
We determine the middle ¢, = - > % of the segment([c,,d,] and calculate the value of the auxiliary

function g(e,). By the value of the auxiliary function, the location of the global minimum is determined:

A) If g(ay) > 0, then @ € [Cy, ag]. Then C, =C; and &, = d, . Then we work with the segment [c,,d,],
or

B) If g(a,) = 0, then @ € [y, d,y]. Then &, =C; and d, =d, . Then we work with the segment [c,,d, ].

Similarly, the following midpoints of the sub-sections are defined:

Cl-i-dl C2+d2 n n
= y o, = ,...,an' . 5
! 2 2 2 2 ©)

Continuing the process of halving the selected segments, you can reach an arbitrarily small segment
containing the value of the global minimum ¢ . Since for each iteration the segment where the global

minimum is located is halved, then after n iterations the interval will be equal |d, —C,| :E|d0 —Cyat the

same time d, < & < ¢, .The iteration with the determination of the middle of the resulting interval and with
the selection of the desired segment will be repeated until we reach the accuracy we need:

Sdek—Ck

As a global minimum & , we take the right end of the segment d , that is @ = d; ~ §, where g(&) > 0.

Thus, the value of the global minimum (3) is found with sufficient accuracy ;. Next, we will consider the
convergence of the method.

Theorem 2.
If Theorem 1 holds, then the iterative sequence (5) of global minimization using an auxiliary function (4)

converges to the desired value of the global minimum & with a given accuracy.
Proof of Theorem 2.

Consider a sequence of numbers «; that are an approximation of the value of the global minimum at the i
-th step.

a, :%(di+ci), ¢ <a<d i-01. 6)

where C,, d, are the boundaries of the sub-segments in which g(c;) =0 and g(d;) > 0.
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Consider the differences:
o — |, e, — ety — et

(7)
We have

1
|051—050|:§|dl+c1 —dy —Cy

1 1
Since we always have either ¢, =C, and d, :E(do +C,) or Cc, = E(do +¢,) and d, =d,.
. 1 1 1 i
Therefore, if €, =C,, then (7): | — | ZE(CO +E(d0 —¢,)—d, —¢,) :Z|C° —d,|, or if d; =d,,
then (7):

1

1 1
|0(1—0£O|=§(d0 +E(d0 —Cy)—dy —C) :Z|do _Co|-

1
Checking similar reasoning and considering that the relation either ¢, =¢, , and d, = E(di_l +C,,) or

1
d,=d,,and ¢, = 5 (di_; +c¢,;) isalways fulfilled:
1
o — | = Z|do Gy

1 1
oz, =t :Z|d1 —¢|= §|do —Cy|

1 1 1
s — | :Z|d2 —C,| :§|d1 ¢ :E|do —Co|
1 1 1 1
oy ey :Z|d3 —Cy :§|d2 —C,|= E|d1 -¢|= §|d0 G|

1
..|O!n —an_1| = W|d0 _C0|

1 .
o, — et 4| = W|d0 —Cy/, it can be seen from here that no matter how small a number &, >0 we can

find such n that W|dO - C0| < &; . After 10 iterations, the initial segment will be 21° = 1024 times shorter.

Theorem 2 is proved.

Theorem 3.

Let the conditions of Theorem 1 be fulfilled. Then the iterative sequence {a,,} obtained by dividing the
segment in half (5) converges to the global minimum of the objective function f (x,, ... x,,) with linear velocity
B =0.5.

Proof of Theorem 3.

From the algorithm described above, it is clear that the smaller the segment [c;; d;], the «; is closer to the
desired minimum value & = ¥ . In addition, after each iteration, the length of the segment is halved, so

1| s
|an+l_&| < 2 %o —

o, —é| o, —a

=05=la,, -&|<05a, -4l
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The latter inequality proves that the iterative sequence converges to the value of the global minimum of the
objective function by linear velocity with a coefficient § = 0.5.

Example. Consider the multiextremal Eckley function [20] in three-dimensional space. Figure 2 shows a
graph of the Eckley function, which has a large number of local minima.

f(X, y) = —20e"02 0.5(x2+y2) _ eO.S(cos(an)+cos(27ty)) +e+20 (10)

—-5<x,y<5

Figure 2. Graph of the Eckley function

Reference value of the global minimum point of the Eckley function f(0;0) = 0. Computational
experiments show the following results:

f(-10%° —10%9) =10
Error &, =107, ¢,, =107,

Conclusions

The task of global optimization has a huge practical meaning. The algorithm described above is completely
new. In other optimization methods, coordinates are first determined or set, then the values of the function at
these nodes are compared and the smallest value of the function is selected. For gradient optimization methods,
if the objective function is multiextremal, then convergence of the method means convergence to one of the
local minimum points of the objective function.

In the proposed method, using horizontal sections, we determine the level where the global minimum is
located. After that, we determine the coordinates of the minimum. The superiority of the new method is that
the method converges immediately to the global minimum. In this algorithm, the middle is determined and one
of the halves of the segment is selected. This provides greater savings than the brute force method.

Calculations of the global minimum by this method are performed in the C++ programming language.
Computational experiments have been carried out for test smooth functions of two variables. The experimental
results show that the proposed algorithm works correctly. The average accuracy of calculating the global
minimum point ¢ = 107 has been achieved.
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