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Abstract

In this paper, a hybrid finite difference/finite element method for solving the saturation equation in the problem of
two-phase non-equilibrium fluid flow in porous media is constructed. The model under consideration is obtained on the
basis of the non-equilibrium fluid flow model by S. M. Hassanizadeh with the generalized global pressure concept. Due
to the hyperbolic nature of the equation, it has several difficulties leading to the need for a careful choice of the solution
method. The classical Galerkin method leads to the appearance of non-physical oscillations at phase interfaces. The paper
investigates the application of stabilized finite element methods for their suppression. Three classical stabilized methods
are compared: the streamline upwind Petrov-Galerkin (SUPG), the Galerkin least squares (GLS), and the unusual
stabilized finite element method (USFEM), and several stabilizing parameters. The comparison of these methods and
stabilization parameters is carried out on the basis of three computational experiments.
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Anoamna
NI.P. baiizepees®, [].A. Omapuesd®, K. Bopanbex®
L C. Amanaconos amwinoazel Hlvizvic Kazaxcman ynueepcumemi, Ockemen k., Kazaxcman
2 ]I Cepixbaee amvinoaswl Ilvizvic Kazaxcman mexuuxanwlx ynusepcumemi, Ockemen K., Kazaxcman
EKI ®A3AJIbI TENE-TEH EMEC AFBIH ECEBIHJIETT KAHBIKTBIKTBI AHBIKTAY JIBIH
TYPAKTAH/BIPBIJIFAH AKBIPJIbI DJIEMEHTTEP 9AICI

Byt sxyMBIcTa KeYeKTi OpTagaFrbl CYHBIKTHIKTHIH €Ki (hazaibl Tere-TeH eMeC aFbIMbI eCeOiH/IeT] KaHBIKTHIK TCHACYIH
HICTITYTe apHAIIFAaH aKbIPIIBl aHBIPBIMIBL/aKBIPITBI SJIEMEHTTEP THOPHUTI 91ici Kacamabl. KapacThIpBUTBIT OTRIPFaH MOJICINb
C.M. XaccaHu3a/IeHiH Tene-TeH eMeC CYWBIKTHIK aFBIHBIHBIH MOJIEII JKOHE JKaJIbUIaHFaH IIT00ab bl KBICHIMBI HET131HIe
aneiHaEl. TeHOeymiH THIepOOTaNblK CHUIIAaThIHA OalIaHBICTBI, OHBI IICHIYy OipKaTtap KUBIHIBIKTApPIbl TYFBI3aIbl JKOHE
IIeNTy OMiCiH MYKHSAT TaHmaynsl Kaxker eremi. Kimaccukanelk [ManmepkwH omici (azamapaplH OeriHY IIeKapachHIA
(U3MKANBIK eMec OCHWUIAIIIApIBIH Taiga OomyblHa oKeleni. Makanana oJapAbl JKOK YIIH TYpaKTaHIBIPBUIFaH
aKBIPJIBI 3JICMEHTTEP OMICTepPiH KOJJAaHy KapacThIpbLIaabl. TYpaKTaHIBIPBUIFAH YII KIACCHKAIBIK omic - IleTpos-
IanepkunHin arpinra Kapebl apici (SUPG), anepkunHiH eH ki kBagpattap oxici (GLS) xoHe cTaHaapTThl emec
TYpaKTaHIBIpbUTFaH akbIpisl dnemMeHTTep oaici (USFEM), conpiMeH Katap OipHelne TypaKTaHIBIPYIIbl TapaMeTpiiep
CaJIBICTBIPBUIAIBI. ATalIFaH 9/IiCTEp MEH TYpaKTaH/ABIPY MapaMeTpiiepiH cajbICThIPY YII ecenTey TaKipuodeci HeriziHue
JKY3€ere achIpbUIa bl

Tyiiin ce3mep: KeyeKTi opTajarsl TeIe-TeH eMeC aFblHAap, TYPAKTaHABIPhLUIFaH aKbIpJbl 3jeMenTTep oxaici, SUPG,
GLS, USFEM.

AnHomayus
JI.P. Baiizepees', /1. A. Omapueeda®, K. Bopanbex®
Y Bocmouno-Kazaxcmanckuii ynueepcumem um. C. Amanoconosa, Yemov-Kamenozopex, Kasaxcman
2 Bocmouno-Kaszaxcmanckuii mexuuveckuii ynusepcumem um. J. Cepuxbaesa, Ycemo-Kamenozopck, Kazaxcman
CTABUJIM3UPOBAHHBIN METOJ KOHEYHBIX SJIEMEHTOB JIJ11 ONPEJIEJIEHUSA
HACBIIEHHOCTH B 3AJTAYE JIBYX®A3HOI'O HEPABHOBECHOI'O TEHEHUS

B pabote mocTpoeH THOPUAHBIA METOJ KOHEYHBIX PAa3HOCTEH/KOHEYHBIX DIIEMEHTOB JUIS PEUICHHS ypaBHEHUS
HACBHIIIEHHOCTH B 3a/iavye ABYX(a3HOM HEpaBHOBECHOM TCUCHHH KHJKOCTH B IOPHCTBHIX cpenax. PaccmarpuBaemas
MOJIeNIb TIOy4YEeHa Ha OCHOBE MOJEITH HEpaBHOBeCHOro motoka xuakoctu C. M. Xaccanmsame ¢ 000OIICHHBIM
ro0abHBIM JaBliecHHEeM. [3-3a TUepOOMYEcKOro XapaKTepa YpaBHEHHS €ro PEIICHHE COIPOBOXKIACTCS PSIOM
TPYAHOCTEH, MPUBOAAIINX K HEOOXOAUMOCTH TIIATEIILHOTO BBIOOpa MeToa pemreHus. Kinaccnueckunit meton ["anepkuna
MIPUBOJIUT K MOSIBICHUIO HEPU3MUECKUX OCHMJUIANNN Ha TpaHUIaxX pasnena ¢ga3. B craTtee uccieayercs NpuMeHEHHE
CTaOWIIM3UPOBAHHBIX METOJOB KOHEYHBIX OJJIEMEHTOB I WX TojaBieHus. CpaBHUBAIOTCS TPH KJIACCUYECKUX
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CTaOMIM3MPOBAHHBIX METOIa: IPOTUBONIOTOKOBEINH MeTox IlerpoBa-I'anepkuna (SUPG), MeTox HANMEHBIINX KBapaTOB
Ianepkuna (GLS) 1 HecTaHJapTHBINA CTAOMIN3UPOBAaHHBII MeTo/1 KOHeUHBIX eMeHToB (USFEM), a Takke HECKOJIBKO
CTaOMIM3HUPYIOIUX NapaMeTpoB. CpaBHEHHE 3TUX METOJIOB M [TapaMETPOB CTAOMIIM3ALMU IPOBOIUTCS HA OCHOBE TPEX
BBIUUCIIUTENIBHBIX SKCIICPUMEHTOB.

KnaioueBble cioBa: HepaBHOBECHBIC TEUEHHS B IOPUCTBIX CPEAax, CTAOWIN3UPOBAHHBIA METOJ]] KOHEYHBIX
anemenToB, SUPG, GLS, USFEM.

1 Introduction

The dynamics of multiphase fluid flows in porous media depends non-linearly on both the structural and
mechanical properties of the fluid and the properties of the surrounding skeleton. However, in real reservoir
conditions, the property of delayed phase saturation has a significant influence on the flow process. The study
of this behaviour led to the emergence of the theory of non-equilibrium fluid flows in porous media. The need
to take this phenomenon into account in the development of oil fields is discussed in many works [1, 2]. It is
necessary to take into account non-equilibrium at all stages of oil field development since the dependences of
the pressure drop on time obtained during laboratory studies of samples of a porous medium for determining
the functions of relative phase permeability differ significantly from the theoretical curves calculated in the
framework of the classical theory of fluid flows in porous media. The effect of non-equilibrium can be
significant: the time of the saturation establishment in the real oil fields conditions is about a year.

There are several approaches to constructing a non-equilibrium model of fluid flow in porous media. The
first approach [3] is based on thermodynamic arguments and volume averaging of microscopic conservation

equations of mass and moment. In [3], the concept of dynamic capillary pressure p®", instantaneous local

c

stat
c 1

difference between phase pressures, was introduced, which relates to the static capillary pressure p
capillary pressure under quasi-static displacement by the relation

Po =Py = pc(s)_ Lats’

where L is a positive valued phenomenological coefficient and S is the water saturation. During the drainage
process, 0,S is negative, therefore p" > p™ , which is confirmed by experimental observations [4]. Dynamic

c
capillary pressure has been the subject of many experimental [5] and theoretical [6, 7] studies.

The approach proposed by the authors of [3] does not take into account the effects of non-equilibrium on
relative phase permeabilities. A more complete model, including the effects of non-equilibrium in both
capillary pressure and relative permeability, is proposed by the authors of [8]. An uncountable number of large-
scale pore rearrangements occur when the multiphase fluid is displaced. The characteristic time of
redistribution for the restructuring of flow networks can be significant. As a result, the flow of each phase does
not depend only on the current saturation. The approach under consideration is based on the assumption that
instantaneous (dynamic) phase permeabilities and capillary pressure depend on static phase permeabilities and
capillary pressure at some effective saturation [9].

In this paper, we consider the non-equilibrium model developed in [3]. First, we construct the computational
model by utilizing the generalized global pressure approach. In this case, the equations of the model are
reduced to a system of partial differential equations for pressure, velocity and saturation. The saturation
equation is of convection-diffusion type with a predominance of convection. The use of the standard Galerkin
method leads to the appearance of non-physical oscillations [10, 11]. There are several approaches to suppress
these oscillations. One of the approaches is to employ the Galerkin method with discontinuous basis functions,
the main disadvantage of which is a significant increase in the number of degrees of freedom. One of the
effective ways to construct non-oscillating schemes is to utilize the combined finite element volume method
for saturation with the counterflow calculation of the mobility coefficient.

In this work, we use the approach based on the stabilization technique. It consists in adding artificial
viscosity to the equation depending on velocity and some stabilizing parameters. The paper deals with the
study of the stabilization influence on the sought approximate solution. Specifically, we consider three classical
stabilization methods and several stabilizing parameters, and present the numerical tests analysis confirming
the effectiveness of their application to the saturation equation in the non-equilibrium flow problem.
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2 Formulation of the Problem
Let us consider the problem of two-phase non-equilibrium incompressible fluid flow in porous media with

a non-equilibrium law in a bounded convex domain Q — R* with a boundary I' =T, UT,, T, "I, =@

¢0,5+V-0, =0,(p.s) (1)
—g0,5+V -0, =0, (p,s), (2)
=Ky o cfwo) 3)
H,
P, = P = P (8)-Lass, (4)
with initial and boundary conditions
s(x,0)=s,(x), xeQ, (5)
G,-i=0, xel,t>0, (6)

where ¢, K are the porosity and absolute permeability of the medium; the subscript & denotes the phases of
water W and oil 0, respectively; S is the water saturation; p,,K,,x, U, is the pressure, relative phase

permeability, viscosity, and fluid velocity of the phase « , respectively; q, is the source/sink term; L is

substitution time.
We introduce the total velocity vector as follows to obtain a computational model:

[

G=d,+0,. (7)

By making use of (3) one can easily derive the relation between the total velocity and gradients of phase
pressures:

i =—k(4,Vp, +4,Vp, ) (8)

where A, =k_u ' is the mobility of the phase & . We introduce a new variable, the generalized global pressure
p, such that:

AVP, +4,Vp, = AVp, (9)

where 4 =4, +4, is the total mobility. By using equations (1)-(4), the explicit form of p can be easily
obtained:

1 1 ,
p= hw Pw + ho Po +E(hw _ho)pc _E_L (fw - fo)pc(gr)dg’ (10)

where h, = hw(s) and h, = ho(s) are some functions called weights such that h, +h, =1,and f, = /1—; :
In order to obtain the pressure equation, sum up equations (1) and (2) and use (8) and (9):
V-u=0,

(kA)'G+Vp=q,
where =0, +0,. The phase velocities are expressed in terms of the total velocity by the relation

(11)
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0, = f,(s)i— 7(s)Vs - r,(s)V(LDs), (12)

where y(s)z—Kﬂo(s)fW(s)%>0, 7,(s)=K2,(s)f,(s)>0. Substitute (12) into (1) to get the saturation

equation:

g5+ 1,(s)1- Vs =V (r(s)Vs)-V - (1,(s)V(LO:s))

Thus, the computational model consists of the equations(11), (13) and the corresponding initial and
boundary conditions.

In [12], the mixed finite element method was constructed for solving the equations (11), the convergence
of the method was investigated and its a posteriori analysis was carried out. In this paper, we focus on solving
the equation (13) with the following initial and boundary conditions in more detail:

Q. (13)

s(x0)=s,, xeQ, (14)
S=0,, Xel,;Vs-ni=g,, xel,t>0, (15)

Assuming that the vector U isknownand f , g,, g, are given functions. Suppose that this problem has
a unique solution in the class of sufficiently smooth functions. For simplicity, we assume that ¢ =1.
Let

V= {VG H*(0,T; H(Q)): Vi, = gD}, V, = {VE HY(Q): v|.= O}.
Next, we define a weak formulation of the problem (13)-(15): find s€V such that for all weV,:
(6.5 W)+ ((s)Vs, V) + (1, ()i - Vs, w)+ (1, (s)va,s, vw) = (q, w), (16)

where (-,-) denotes the scalar product in L?(€2).
Let Q, is the quasiuniform partition of QQ and NE is the number of elements in €, . Define the finite
element space V, cV as follows:

V, =, e HI Q)N Co@)v,), e R(K) VK e, |

Let us introduce a uniform grid on the time interval [O,T] by points t, = nAt, where At>0 is the time
step. Discretize the time derivative in (16) using the backward Euler scheme as follows:

(S el v (v 67}V = ).

At At

Construct the following iterative method based on (17):
(Sn‘mA_tsnl ,W] n (]/(Sn'mil)vsn'm , VW)"F (fv'v(sn,m—lﬁ Bv/il , W)+

+[y1(s”'m‘1)%ﬂw):(q,w) (18)

n,m

where s"" is the sought function at the M -th iteration.
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3 Stabilization of the Equation
Let us first consider the special stationary case in which ,(s)=0, k, = ;/(s”’m’l), u, = fv'v(s”’m’l)i are known

functions. By denoting s"" =s, it follows from (18) that
(k,Vs,Vw)+ (G, - Vs,w) = (q,w), YweV,. (19)

NE
Seek the solution in the form s= Zsjgoj (X) where ¢ (x) denote the basis functions. According to the
j=1

standard Galerkin method, we choose W = ¢, (X). Thus, we arrive at the following system of equations with
respect tos; :

NE

Z[(klv¢j,v¢i)+(ul Voo )]51 =(9.¢)i=1,NE.

j=1
This yields the system of algebraic equations
AS=F (20)

with elements A= [AVJJ, F=[F],

Al =(klv¢j’v¢i)+(ﬁl'V(Dj’(pi)’ F =(Qa¢i)1 S :(51’52""’SNE )T'

According to the stabilization technique, we modify the elements of the stiffness matrix A ; in the
following way:

A=A+ 5 (A8 -0A ), (21)
K
The specific choice of the operator A leads to different stabilization methods. For example [13],
SUPG Aw, =T, - VW, ,
GLS: Aw, = -V -(k,Vw, )+, - Vw,, (22)
USFEM : Aw, = V- (k,YW, )+, - VW, .

One of the important points in the implementation of stabilized methods is the choice of the stabilization
parameter 7, . The parameter is chosen based on the problem properties, for example, on the principle of

discrete maximum, convergence and stability analysis, and others. We give the following examples of the
stabilizing parameters for linear elements in accordance with the chosen method [13]:

i when Pe, >1,

2l |
T e = (23)
2
M when Pe, <1,
12k,
_ -1
L (24)
ol ohe )

1

7= {9[‘%) +[@J J | (25)

54




Abaii amvinoaser Kaz¥I1Y-uiny XABAPIIBICHI, « Duszuka-mamemamura sviivimoapsly cepuscol, MNe2(78), 2022

-1
12k, 2t
7o =(h_21+_|h2 |J , (26)
K K
o =| 8 of 10 _1 (27)
“ | h 3k, '

_ [u

where Pe, , hy is diameter of the triangle K .

1
In the non-stationary case, the matrix A and the vector F depend on time. Let A, and F, denote the

matrix A and vector F evaluated at t =t . Then (18) reduces to the system of algebraic equations
S, = (M + At (MS, , +AtF,),
where M is the mass matrix, S is the solution of (16) at t =t .

4 Comparison of the Stabilizing Parameters

Let us compare the stabilization methods (22) and the stabilizing parameters (23)-(27) based on three
computational experiments. The first computational experiment is to test the stabilization effect on the
approximate solution using the SUPG method as an example. The second computational experiment is to
estimate the deviation from the upper and lower bounds of the solution using stabilization methods and
stabilizing parameters and different grid configurations. The third computational experiment is to compare an
approximate solution with a known exact solution.

Example 1. In Q=[0,1]2, consider the problem (15), (19) with the parameters U, = (\/5/2—\/5/2)
k/(x)=10", q=0,T, =2, and

1, xe{(x,x,)kx =0,x,<0.80rx, =0,x <0.8},
gD(X)= 0 -
, otherwise.

Choosing the coefficient Kk, in this form makes the problem with a predominance of convection. This

equation has a gap along the straight line x, = -0.8 + x,, including at the point (0,0.8) on the boundary of the

domain. Figure 1 (a) and Figure 1 (b) shows the solution obtained without stabilization on different meshes
with different level of thickness. During computational experiments, thickening the grid along the gap line and
near the break at the border does not fully suppress the oscillations. Figure 1 (c) shows that the stabilization
significantly improves the quality characteristics of the approximate solution.

b)
Figure 1. Thickening the grid and using the stabilized method

a) Thickening the grid near a break at the boundary; b) Thickening the grid along the gap line;

c) The use of the stabilized method.
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Example 2. Let Q; =Qx(0,T), where Q is a unit square as in Example 1, and I, =T, LI,
I, ={xel:x, =0}, Iy = {x.el":x1 =0orx, =1}, and I, =T'\I,. In Q,, consider the equation (13) with

the parameters T =1, G=(0.15,1), y(s)=10", 5,(s)=0, f,(s)=s, and the initial and boundary conditions
are as follows:

1, XeFDl,

“60)=0 9,=

were used, which contain 968, 3744 and 15110 elements. The value of the parameter 7 is set to 107 . The
calculations were performed until the time layer N =100 was achieved, which corresponds to the time value
T =1. Obviously, the values of the exact solution are between 0.00 and 1.00. Implementation of (22) without
the use of stabilization leads to the appearance of non-physical oscillations the absolute value of which is more
than 60% (Table 1).

<l gN(x):O. In the computational experiment, three grid configurations
Dy !

Table 1. Boundaries of the interval containing the values of the exact and approximate solutions

Exact bounds  |Without stabilization SUPG+ T, GLS+7, USFEM+7,

NE lower upper lower upper lower upper lower upper lower upper

968 0.00 1.00 -0.38 1.74 -0.04 1.04 -0.03 1.03 -0.04 1.03
3774 0.00 1.00 -0.30 1.32 -0.03 1.02 -0.02 1.01 -0.03 1.01
15110 0.00 1.00 -0.21 1.17 -0.02 1.00 -0.02 1.01 0.01 1.01

The upper row of Figure 2 shows an approximate solution without the use of stabilization at t =t , t;,,

tio » @nd in the lower row with the use of the SUPG method and the stabilization parameter 7. Table 1
illustrates the deviation dependence of the approximate solution on the exact bounds, depending on the choice
of the stabilization method and the stabilizing parameters. Stabilization made it possible to reduce the deviation
from the exact boundaries to less than 3% for all of the three methods considered.

Figure 2. The approximate solution of the Example 2.
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Example 3. In Q =Qx(0,T), where Q=(-050.5)x(-050.5) the problem (15), (19) with the
parameters »(s)=k, =107, (i = (J/\/E]/\/E) f (s)='s, and the right-hand side

f(x,t)=

Ve
- k{%qﬁz(x,t,g)tanh(
&

X + X, —t 2_
2

28

¢2(x,t,g)+i¢2(x,t,g)_izk1¢2(x,t,g)tanh[
2¢ &

¢“(x,t,e)}

X + X, —t

)

is considered where ¢(x,t,&)=sech((x, +x, —t)/2&), 7,(s)=k, =const, and £=10"7. The exact solution
of the problem is s(x,t)=0.5—tanh((x, +x, —t)/2¢).
In this computational experiment, the accuracy value was estimated in the L*-norm. Two values of the

parameter 7 equal to 1/30 and 1/60 are accepted. The grid configuration was chosen in the same way as in
Example 2. To estimate the influence of the term with the third derivative of the solution, we considered two

cases, K, =10"° and K, =107. According to the results of numerical tests presented in Tables 2 and 3, SUPG
was the most effective in the first case, and GLS and USFEM were in the second case.

Table 2. L?-errors of the approximate solution depending on the stabilization method and stabilizing parameters

when k, =10°°

=130 7=1/60
MethOdS N e c S a f c s a f
Tk Ty Ty Tk Tk Ty Tk Ty
. 968 13052 | 1.2246 | 11218 | 1.1089 | 1.1473 | 1.0045 | 0.8286 | 1.0083
Sta\l’k‘)’:ﬂ‘z‘;‘t’fon 3744 | 09934 | 09924 | 08214 | 1.0086 | 0.9645 | 08531 | 0.5425 | 0.8028
15110 | 0.7911 | 08512 | 0.7457 | 0.7645 | 0.7654 | 0.7491 | 0.4289 | 0.6732
968 | 00615 | 00717 | 00754 | 0.0718 | 0.0243 | 00283 | 0.0192 | 0.0185
SUPG 3744 | 00312 | 00499 | 0.0447 | 0.0413 | 0.0171 | 0.0089 | 0.0093 | 0.0090
15110 | 0.0091 | 0.0248 | 00098 | 00200 | 0.0033 | 0.0045 | 0.0047 | 0.0043
968 | 00723 | 00792 | 00749 | 0.0721 | 0.0247 | 00285 | 0.0288 | 0.0287
GLS 3744 | 00425 | 00447 | 00432 | 0.0496 | 0.0179 | 0.0089 | 0.0090 | 0.0093
15110 | 0.0212 | 00219 | 00213 | 00236 | 0.0132 | 0.0041 | 0.0043 | 0.0041
968 | 00547 | 00545 | 00557 | 0.0589 | 0.0076 | 0.0189 | 0.0191 | 0.0190
USFEM 3744 | 00346 | 00475 | 0.0345 | 0.0315 | 0.0527 | 0.0095 | 0.0096 | 0.0095
15110 | 0.0129 | 00212 | 00237 | 00132 | 0.0497 | 0.0043 | 0.0042 | 0.0044

Table 3. L?-errors of the approximate solution depending on the stabilization method and stabilizing parameters

when k, =107

Method N r=1/30 7=1/60
Without 968 1.2211 1.1835 1.0256 1.1164 1.2858 1.1764 1.2014 1.3875
stabilization 3744 0.6547 0.7436 0.9182 0.8384 1.0645 0.7621 0.8574 1.0064
15110 0.4583 0.5487 0.6365 0.5912 0.6257 0.4471 0.6314 0.5947
968 0.0689 0.0708 0.0658 0.0618 0.0296 0.0187 0.0214 0.0173
SUPG 3744 0.0252 0.0338 0.0228 0.0294 0.0131 0.0114 0.0112 0.0117
15110 0.0128 0.0100 0.0111 0.0182 0.0068 0.0051 0.0054 0.0058
968 0.0558 0.0587 0.0587 0.0554 0.0141 0.0114 0.0047 0.0146
GLS 3744 0.0268 0.0241 0.0248 0.0223 0.0054 0.0047 0.0075 0.0052
15110 0.0193 0.0187 0.0158 0.0187 0.0021 0.0024 0.0036 0.0027
968 0.0518 0.0514 0.0525 0.0582 0.0647 0.0141 0.0116 0.0112
USFEM 3744 0.0284 0.0251 0.0287 0.0237 0.0574 0.0051 0.0057 0.0053
15110 0.0161 0.0163 0.0178 0.0187 0.0331 0.0029 0.0025 0.0021
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5 Conclusion

Based on the results of the conducted studies, it can be concluded that the use of stabilization has
significantly improved the qualitative pattern of the sought approximate solution. The presented numerical
examples illustrate the effectiveness of the proposed approach to solving the saturation equation in the problem
of two-phase non-equilibrium fluid flow problem.

In future works, the authors intend to strictly theoretically study the stability and convergence of the
proposed numerical schemes. In addition, a separate work will be devoted to the study of the non-equilibrium
effects within the framework of the considered model using more realistic data.
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