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Abstract

This manuscript is devoted to the development of methods for finding the diffusion coefficient of soil moisture and
the thermal conductivity coefficient of soil by using the system of Lykov's equations for heat and mass transfer in the
soil. The conjugate system of partial differential equations is constructed by using the direct initial-boundary value
problem and additional boundary conditions on the accessible boundary of the region. Iterative formulas for finding the
diffusion coefficient of soil moisture and the thermal conductivity coefficient are derived from the minimization of
specially constructed functional and solution of direct and conjugate problems. The direct and conjugate problems are
discretized by the Dufort-Frankel Difference scheme. An algorithm for solving the coefficient-inverse problem is
developed and the program is designed in Matlab software package. Numerical calculations are conducted in order to
verify the convergence of iterative processes.

Keywords: inverse problems, heat and mass transfer, conjugate problem, diffusion coefficient, thermal conductivity
coefficient.
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1 Introduction

The number of new porous materials in construction keeps increasing. Therefore, we have chosen the
transfer of moisture and heat in a porous medium. The object of research is porous materials, while the subject
of research is a system of nonlinear differential equations with partial derivatives. The moisture-conducting
and heat-conducting characteristics of new materials are usually unknown. In this regard, the development of
methods for finding material parameters becomes a relevant task. Therefore, we aim to develop approximate
methods for finding the above parameters. The purpose of research is to generate new methods for calculating
the moisture-conducting characteristics of material. The research methodology is the method of mathematical
modeling.

Moisture is a key factor in the durability and performance of buildings. Excessive levels reduce structural
quality, affect interior air quality, heatingcomfort, along with energy efficiency in a building [1]. As a result,
several models have been proposed by many scientists to forecast the influence of moisture on the energy
performance of buildings. The main overview on this topic is given in the work [2]. From the physical point
of view, the transport of air through porous construction medium has a decisive influence on the amount of
moisture. Various studies emphasize these effects using experimental and numerical results [3] - [4]. A number
of numerical models are studied in order to forecast the physical phenomena of conjugate transfer of heat,
moisture and air through porous materials of building. Physical concepts of the study are based on conservation
laws of mass for dry air, steam and liquid water, in addition to it on the conservation law of energy, which was
described in detail in an early work of Lykov [5]. As a succession of the work, numerical models presented in
later studies can be splitted into two major groups. The first group considers three evolutionary differential
equations for calculating temperature, mass content, and air pressure in a porous medium. Papers [6] - [7]
propose a model that investigates transfer through hollow porous blocks. It is based on an implicit finite
difference numeric scheme. Just recently, commercial COMSOLTM software has been used to research a
numerical model for this kind of physical problems [8]. The authors of this work specify the scheme that is
based on a time-explicit finite element approach. The main drawback of these numerical models ison their
computational costs. The implicit scheme requires costly sub-iterations at eachperiod of time to deal with
severe nonlinearities of the problem. An explicit approachneeds very delicate time steps to satisfy the Courant-
Friedrichs-Levy (CFL) stability conditions. And, the characteristic time of air transfer is very short in
comparison with time for heat and mass transfer.

The substance associated with the capillary-porous body in the region of positive temperatures can be in
the form of liquid, vapor and inert gas; at negative temperatures - in the form of ice, subcooled liquid, vapor
and gas. Depending on the type of relation between moisture and body, the freezing temperature of liquid will
vary within wide ranges. Therefore, there is always a certain amount of subcooled liquid in capillary-porous
bodies at negative temperatures with different forms of moisture bonding [9, 10].

The second specific feature of mass and heat transfer in capillary-porous bodies is the partial filling of pores
and capillaries with moisture. That is, part of the capillaries is filled with liquid and ice, and the rest is filled
with a vapor-gas mixture. The amount of moisture changes in the process of mass and heat transfer for both
states [11]. Therefore, when deriving transfer equations, it is necessary to take into account the change in the
concentration of moisture in capillaries of the body. Methods for solving inverse problems are studied in [12,
13]. Kabanikhin S. I. et al [13] investigated the mass transfer in liquid, which is governed by the equation with
liquid diffusion coefficient depended on the concentration. Numerical algorithm for solving direct and inverse
problems is presented.

2 Mathematical model
The mathematical model of interrelated heat and mass transfer in one-dimensional case is written in the
form of system of Lykov's differential equations [5]:

c p0_0fy 29, 4N 1)
a” ot ax\ 9 ox ot
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where @and W are functions that characterize the change in temperature and mass transfer potential,
respectively, X is the thickness of the layer, t is the time, D, is diffusion coefficient, D, is thermal diffusion

coefficient, Cq is the heat capacity, p is the density, kq is the thermal conductivity coefficient, ¢ is the ratio

of vapor diffusion coefficient to the coefficient of total moisture diffusion, and r = ApC_, where A is the
heat of phase change, C,, is the moisture capacity.

Boundary conditions of the third kind for possible real situations on the earth's surface are revealed as:

00

K, 5 =% (6 - Ha(t)L ~(1-¢)ra, W —Wa(t)XX:H : 3
oW 00 .
0,50 —a o, ©

where ¢, is the convective heat transfer coefficient, 6, is the air temperature, W, is the air moisture

am

potential, and o — , Where «, is the convective mass transfer coefficient.

m

Boundary conditions at the lower boundary of the region are:

20(x,t) AW (x,t) 0 5)
X |y X |,
The following initial conditions are set:
o(xt)_, =To. W(x,t)_, =W,, (6)

where T, is the initial temperature, W, is the initial moisture potential.
In addition, measured values of temperature and moisture potential T, (t), W, (t)on the earth's surface are

given. It is required to find the distribution of heat and moisture, the thermal conductivity coefficient kq and
the diffusion coefficient D,, . The inverse problem is solved in the area Q = (0,H)x (0.t ).

max

2.1 System of equations in dimensionless variables

After converting the original system of differential equations (1) — (6) to the dimensionless form we obtain:

oT (;t:,t*) _KF, o°T xzt CEe ou(x’ ,t*)’ @
V) g OTHE) o QUK E) @
at* w' 21 %2 W' 22 ax*z '
G Tt <R (T0)-T, ) - R LB 1)U, ), ©)
o5, U0 oy, RO ()0, ) @0
oT (Olt* ’ _o, oU (Olt*) 0, (12)
X |+, OX oo
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T(x0)=1  U(x0)-=1 (12)
where
t*zL, X*Zl, T =£1 U :ﬂ'D\jv — Dy
tmax H TO WO DWO
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2.2 Construction of conjugate problem
The measured values of temperature and moisture in dimensionless form are written in the following form:

W, () T
U (t) = T, () =—2—
W0 T,
where W, and T, are taken from the initial condition.
Using the system (7) - (12), it is required to determine T (xt),U(x,t), D, , k,.
From this point on, U (t) and T, (t) will be denoted as U (t) and T, (t).
The problem is solved by an iterative method. Firstly, the initial approximations D, (n) and kq (n) when
n =0, are given and the next approximations are determined from the monotony of the functional
(D, K, )= j( Lt)-T,(t) dt+j (Lt)-U, (t))dt. (13)

0
The corresponding solutions of the problem (7) - (12) for D,,(n)k (n) and D, (n+1), K, (n+1) are
denoted as
T(xt;n) =T, (x1t), U(x,t;n)=U_(x,t),
TXtn+1)=T,,(xt), UXtn+1)=U_,(x1).
Hence for functions
AT(X,t) =T, ,(X,t)=T,(x,t), AU(x,t) =U_,,(x,t) -U_ (x,1),
the following equalities are derived:

OAT (x,t O2AT (x O%AT (x,t 0T (x,t OAU(X, t
BTOD _ _ax< )4 Ak F _axg )+ Ak F, aiz ) 08Ut
2 2 2:
oAU (x,t) _ D,F, d AT(Zx,t)JrADW 3 d AT(Zx,t)JrADW F, d T(>2<,t)+
OX OX
0%AU(x,t 0*AU(x,t o2U(x,t
+D,F,, axg ) +AD, F,, % +AD, F,, T(Z)’ (15)
OAT (Lt OAT (Lt oT (Lt
K, Fn% + Ak Fyy #+ Ak Fyy L1) =-F AT(Lt)- (- ¢)F,,AU(LL), (16)
D, F,, aAT(x 1) AD, F,, aAT(x 1) AD, F,, aT(xt)
AAU (x,t) AAU (x,t) aU (x,1)
+D,F,, — =~ +AD, F,, ———Z+AD,,F,, =—F, AU(L 1), 17)
OX OX X
oAT(O,t)  _ 0 oAU(t) 0. 8
OX <0 OX <0
AT(x,0)=0, AU(x,0)=0. (19)
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Multiply (14) by an arbitrary function (X,t) and integrate over the entire domainQ = (0,1) x (0,1). After
a single integration by parts over X and t, the next equality is obtained:

x=1
= By oAT OAT ot
(aT. )'-0‘(“E):(quﬂW+AqunW+Aqun&"”jx0‘
OAT OAT oT oy oy
— (kq Fll W + Akq Fll g + Akq Fll a)( o j (EF]_ZAU V/) (61:12AU ot j (20)

We introduce the following notations:
1 1
f g)=jdtjf(x,t)g(x,t)dx,
0

f(Lt)g(L t)dt,

(f.a)
(f.9)_, =

oy (0,t _— I .
W(x ) = 0. Taking into account the initial-boundary conditions (12), (11),

f(x,Dg(x,)dx.

O'—;H o'—.H

Assume that (x,1) =0,
(9) and (18), we apply differentiation by parts over the variable x to the fourth term of the right-hand side of

equality (20) and deduce that,

. 0
A

oT,., Oy o’y oy
- [Ak Fll Fl , EJ + (AT, kq Fll y — SFleU , E . (21)
Now, we multiply (15) by an arbitrary function 77(X,t) and integrate over X from 0 to 1, and overt from

0 to 1. After a single integration by parts over X and t, the following equality is constructed:

0 oAU oAU ou
(au,n)2 [AU a?j ~(AU,F) [D |:22 +AD, F,, ADWF22&+
OAT OAT aT d
+Dy Py~ +AD, F21 +AD,Fy a;?j 22)

By putting together equatlons (21), (22), and collecting similar terms, we derive that,

oy oy o’y
[AT , Ej ~(AT Fw)]  —(aU,@-e)Fw) - (AT, K,Fu Ej o (AT K Fa 67} _

al.., oy oy on
—| Ak R, —™ = |—| AU, &F, AU, AU, F, -
[ Hoax 8Xj ( oot j ( atj ( °mn]X:l

—( AU,D,,F,, a—”] ( AT, D, F,, ‘3’7) (AD F,, Mo a"j—
X )| X )| oX  OX
oT,, 0 o o
- (ADW Foy 2 a—)’Zj + [AU D, Fy, aTZj + (AT, Dy Fy K’Z) . (24)

Functions ¥ (X,t) and 77(X,t) are selected in such a way that the following equality is valid:
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oy, 0 ow) 0 877)
k,F D, F =0, 25
ot 6x(q”6xj ax( 2 ox =
0 0 0 0
a?+a (DWF22 aZj eF, 8”;’ 0. (26)
And we set the following boundary conditions for functions ¥ (x,t) and 77(X,t):
0
- (Foqlt// +k Fe 4D, F, az j = 2T t)-T, (1)), @)
x=1
—((1— &)t + Foutt + Dy Fyp ‘ZZ) —2U@t)-U, ). (29)
x=1
oy (0,1) _ 0 on(0,t) _ 0 29)
OX OX
At t =1 the following conditions are set:
w(x1) =0, n(x1)=0. (30)

System (25) - (30) is called the conjugate problem of the system (7) - (12).

2.3 lIterative formula for calculating coefficients
After construction of conjugate problem, the following integral equality is derived from the equality (24)

_ _ U, On Moy On)
2Tt~ T, (),AT)+2ULt) -U, (t),AU )= [ADWFZZ axj (ADWF21 - axj

oT . oy
[ ak g, Tea OV} 31
( TH axj 5D

Subtracting values of the functionals of two different iterations from the formula (13), we deduce that,

3(D,, (n+1).k, (n+1))-3(D,, (n). k, (n))= 2} (T@t)-T, (AT @ t)t + 2j(u (Lt)-U, (t))AU L t)t+

+ [T OFdt [AUEYPd

Taking into account (31), we derive the equality:

3(Dy (1+2)k, (1)~ 3(D, () ky ()= [ (AT (1 )Pt + [ AU, 2) Pl -

0

oAU, o OAT, 8 OAT, 8
_F”(ADW aZj F”[A ox ’&UJ_F“( ox ’a_fj_

(e [ap, Pn 27 ¢ [ap, T 97| g, Ak, Zn T ov ||
ox ' ox x| ox ox ' ox

The first five terms on the right-hand side of equality are the second-order infinitesimal. Therefore, the
sign of the left-hand side is determined by the sign of the last three terms standing on the right-hand side of
the equal sign. We aim for the monotonical decrease of functional from iteration to iteration, hence,

D, (n+1)=D, (n)+ ﬂl(n(Fzz(%,a—n}L Fﬂ[aT” ,@D,

OX OX OX
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where f3,(n)= Conp B,(n)= (1+ﬂ—r21)”2; 14, 1, >1 are descent parameters.

3 Numericalresults

The computational experiment was carried out by the Matlab software package. In order to verify feasibility
of the method, the following experimentally determined thermophysical soil characteristics are taken
from [14].

At t=0, the material is considered with uniform fields, with a temperature T, =10°C and initial moisture

potential U, =86%. The boundary conditions are represented by air temperature T, = 20°C and air moisture

potential U, = 4°M . The computational experiment is carried out for soil with a depth of 1 m, within 24
hours.

Dimensionless numerical values are obtained by using formulas from chapter 2. The numerical solution is
calculated by DuFort-Frankel different scheme with spatial discretization parameter Ax =107 and time
discretization parameter At =107°.

Figures 1 and 2 show the numerical results obtained at Ax =107, At =10"*with initial approximations of
the iterative method, diffusion and thermal conductivity coefficients of which deviate from the exact value
by 20%.

0,35 0,8
03 0,7
£ o025 /\ T 06 [\
S g >05
T 02 ST \
g 5
§ 0,15 23 O
o0 Q ¢
2 £ 803
= 01 e
5 0
S 02
0,05
0,1
0
0 5 10 15 0
- 0 20 40 60
Number of iterations
Number of iterations
Initial approximation of the diffusion coefficient Initial approximation of the thermal
conductivity coefficient
The exact value of the diffusion coefficient The exact value of the thermal conductivity
coefficient
Figure 1. Diffusion coefficient with an initial Figure 2. Thermal conductivity coefficient with an
approximation deviated by 20% initial approximation deviated by 20%

Figures 3 and 4 show the results of calculating diffusion and thermal conductivity coefficients with initial
approximations deviated from the exact value by 35% atAx =107, At =10"°.
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4 Conclusions

In this paper, we consider the inverse problem of heat and mass transfer in the soil, which is described by
the system of partial differential equations. The following results are obtained:

- a conjugate problem is derived from the direct initial-boundary heat and mass transferproblem;

-iterative formulas for calculating the thermal conductivity and diffusion coefficients are derived based on
the functional minimization;

-direct and conjugate difference problems are constructed using the DuFort—Frankel scheme;

-an algorithm is developed for obtaining the unknown parameters of the inverse problem and the program
is designed in the Matlab software package;

-numerical calculations have been carried out in order to prove the convergence of iterative processes.

For solving the system (1) - (2) it was used the Dufort-Frankel scheme, which is described in detailin [15].
And this work demonstrates that the Dufort-Frankel scheme is unconditionally stable. However, our numerical
calculations show that the solution of the coefficient inverse problem of finding diffusion and thermal

conductivity coefficients by Dufort-Frankel scheme gives conditional stability at At <1072,
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