Перейти к основному контенту Перейти к главному меню навигации Перейти к нижнему колонтитулу сайта
Вестник КазНПУ имени Абая, Серия «Физико-математические науки»

МОДЕЛИ ГЛУБОКОГО ОБУЧЕНИЯ СЕМАНТИЧЕСКОЙ СЕГМЕНТАЦИИ В ЭХОКАРДИОГРАФИИ: FINE-TUNING НА ОСНОВЕ НАБОРА ДАННЫХ

Опубликован 04-2024
Международный университет информационных технологий, г.Алматы, Казахстан
Международный университет информационных технологий, г.Алматы, Казахстан
Международный университет информационных технологий, г.Алматы, Казахстан
Аннотация

Данная статья посвященап эксперименту по повышению точности моделей семантической сегментации в кардиологии с использованием специального набора данных эхокардиограммы. Цель состоит в том, чтобы адаптировать существующую модель глубокого обучения для лучшей сегментации структур сердца на эхокардиографических изображениях, что имеет решающее значение для автоматизированной диагностики заболеваний сердца. Улучшение производительности оценивается с использованием показателей, специфичных для кардиологии, которые показывают повышенную точность сегментации сердечных структур. Такой подход повышает клиническую полезность модели для кардиологов при диагностике и планировании лечения. Результаты подчеркивают потенциал индивидуальных моделей глубокого обучения в медицинской визуализации и подчеркивают важность специализированных наборов данных для точности в медицинских приложениях. Это исследование вносит значительный вклад в развитие искусственного интеллекта в здравоохранении, предлагая достижения в области автоматизированного эхокардиографического анализа для клинического использования.

Язык

Eng

Как цитировать

[1]
Ukibassov, B., rakhmetulayeva, S. и Bolshibayeva, A. 2024. МОДЕЛИ ГЛУБОКОГО ОБУЧЕНИЯ СЕМАНТИЧЕСКОЙ СЕГМЕНТАЦИИ В ЭХОКАРДИОГРАФИИ: FINE-TUNING НА ОСНОВЕ НАБОРА ДАННЫХ. Вестник КазНПУ имени Абая, Серия «Физико-математические науки». 85, 1 (апр. 2024). DOI:https://doi.org/10.51889/2959-5894.2024.85.1.014.